
.

SANDIA REPORT
SAND85–2348 ● UC–32
Unlimited Release
Reprinted September 1992

.?

Sandia Software Guidelines

Volume 5
Tools, Techniques, and Methodologies

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy

under Contract DE-AC04-76DPO0789

4
-?

“*
. .

SF29CIIIQ(8-81)

--

.

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof or
any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal Rd
Springfield, VA 22161

NTIS price codes
Printed copy: A05
Microfiche copy: AO1

Distribution
Category UC-32

SAND85-2348
Unlimited Release
Printed July 1989

Reprinted September 1992

Sandia Software Guidelines

Volume 5

Tools, Techniques, and Methodologies

Sandia National Laboratories
Albuquerque, New Mexico 87185

Abstract

This volume is one in a series of Sandia Software Guidelines intended for use in
producing quality software within Sandia National Laboratories. This volume
describes software tools and methodologies available to Sandia personnel for the
development of software, and outlines techniques that have proven useful within
the Laboratories and elsewhere. References and evaluations by Sandia personnel
are included.

Foreword

This volume is one in a series of Sandia Software Guidelines intended for use in producing
quality software within Sandia National Laboratories. These guidelines, when used in
conjunction with the IEEE Standard for Software Quality Assurance Plans, will help ensure
that computer programs developed within the Laboratories are usable, reliable, understand-
able, maintainable, and portable. When complete, the series will consist of the following
documents:

Volume 1: Software Quality Planning (SAND85-2344)
Presents an overview of procedures designed to ensure software quality. Includes a
sample software quality assurance plan for a generic Sandia project.

Volume 2: Documentation (SAND85-2345)
Presents a description of documents needed for developing and maintaining software
projects. Includes sample document outlines for a generic Sandia software project.

Volume 3: Standards, Practices, and Conventions (SAND)85-2346)
Presents consensus standards and practices for developing and maintaining quality
software at Sandia. Includes recommended deliverables for major phases of the
software life cycle.

Volume 4: Configuration Management (SAND85-2347)
Presents a methodology for configuration management of Sandia software projects and
their associated documentation.

Volume 5: Tools, Techniques, and Methodologies (SAND85-2348)
Presents descriptions and a directory of software tools and methodologies available to
Sandia personnel.

i

Acknowledgment

A consensus document like this volume of the Guidelines cannot be produced without the
cooperation and hard work of a great many people throughout the Laboratories. The
sponsoring Software Quality Assurance Division wishes to thank the members of the
balloting group who reviewed and refined Volume 5, and the many contributors of tool
evaluations and reviews.

In addition, the editor of Volume 5 wishes to acknowledge and give special thanks to John
Franklin, 7254, and Margaret Olson, 2814, for their efforts in preparing, writing, and
publishing this volume. The quality of their effort is clear for all to see.

-.

.

Lynn Ritchie, 7254
Editor, Volume 5

Contents

p

.*

1 Introduction

1.1 Intent ..

1.2 Environment ...

1.3 Applicability ..
1.4 Organization ..
1.5 How to Use This Manual ..

2 Software Methodologies and Techniques

2.1 Software Requirements Specifications ..
2.2 Prototyping ..

2.3 Structured Analysis ..
2.4 Information Modelling ...
2.5 Structured Design ..
2.6 Object-Oriented Analysis and Design ...

2.7 Analysis and Design of Real-Time Systems ...
2.8 Software Metrics ...
2,9 Software Inspections ..
2.10 Software Configuration Management ..
2.11 Software Project Management ...

1

1
1
2
2
3

4

5
6
7
9

10
13
14
16
17
18
19

3 Guidelines for the Selection of CASE Tools 21

3.1 Why Use CASE Tools? .. 21

3.2 Considerations for the Selection of CASE Tools ... 22
3.3 What Type of Tools Are Needed? ... 24

3.3.1 Stand-alone Versus Integrated Tools .. 25
3.3.2 Specific Features of CASE Tools ... 25

4 CASE Tools In Use at Sandia 32

4.1 Tools for User Interface Prototyping .. 33
4.2 Tools for Analysis, Design, and Implementation ... 36
4.3 Tools for Software Configuration Management .. 51

4.4 Tools for Static Code Analysis ... 57
4.5 Tools for Reverse Engineering ... 63

4.6 Tools for Project Management ... 67

Appendix A: References 70

Appendix B: Glossary and Acronyms 76

ADprandix C: Softwara Tad Daecripti6n Corm S2

Index 85

. ..
111

List of Figures

1 Typical Software life Cycle 4
.. 8

-.

:2 Sample Data Flow Diagram
3 Example Entity-Relationship Diagrams ... 10
4 Example Structure Chart .. 11
5 Warnier-Orr Diagram .. 12
6 Combined Control Flow/Data Flow Diagram ... 15

iv

Tools, Techniques, and Methodologies

1 Introduction

Software produced at Sandia is important, not only to the function of the laboratories but
to the nation’s security as well. Increasing reliance on computers has driven the demand for
new software that must perform more extensive and increasingly complex functions. These
demands for additional function and power require a corresponding increase in the
complexity and size of the software needed to satisfy these needs.

The rapid increase in the complexity and size of today’s software often overwhelms those
who must produce it. The future success of software development depends not so much on
larger or faster computers but upon finding and using tools, techniques, and methodologies
for the production of software. These aids are needed not only to cope with the magnitude of
development efforts but to produce a quality software product.

1.1 Intent

The intent of this manual is to provide a near-current directory of software tools,
techniques, and methodologies available to Sandians. The manual k designed to help

individuals—designers, managers, quality assurance personnel—involved with computer
programs and associated documentation at Sandia National Laboratories to achieve the goal
of producing high-quality software. This volume is not intended to teach users how to employ
these tools and techniques. Rather, the purpose is to inform users of what tools and
techniques are available and how additional information about them can be obtained.

The pace of change in the areas of software tools, techniques, and methodologies has been
rapid. To achieve the goal of providing a near-current directory of tools and methodologies
will require periodic revisions of this volume. The intent is to update and reissue this volume
of the Sandia Software Guidelines every few years.

1.2 Environment

Sandia National Laboratories enjoys the uncommon position of fulfilling both research
and development, as well as production-oriented missions. Either mission, and certainly the
mix of both, lends itself to the creation of “islands of automation.” Most software profes-

. sionals are unaware of what projects are ongoing in neighboring organizations and what
software tools have been obtained to support those projects.

*

1

Software has played a key role in the Sandia environment for some time. Ample support
exists in the form of software tools, techniques, and methodologies for the software developer
to enhance product quality. However, it is nearly impossible for any one individual to be
aware of all software tools and methodologies available, let alone know what assistance such
aids can provide. This volume has been written to assist in providing such information to
Sandians.

1.3 Applicability

This manual is designed for use by any organization or project developing or maintaining
software, using either Sandia personnel or personnel under contract to the Laboratories. This
document provides guidelines to follow regardless of the application of the software, (e.g.,
WR (War Reserve) or non-WR), the programming language, or the size of the development
or maintenance effort.

This manual is a set of guidelines, not directives. Inclusion of a description of any tool or
methodology in this manual does not imply endorsement by Sandia National Laboratories.
Similarly, exclusion of any given tool or methodology should not be interpreted as implied
criticism.

1.4 Organization

Volume 5 of the Sandia Software Guidelines has been divided into four chapters.
Chapter 2 provides an outline of a number of recognized techniques and methodologies used
during the software development life cycle. While many of these techniques and methodol-
ogies have been automated, it is not the intent of this section to describe the tools that use
them. Rather, this section provides a brief description of the underlying method behind each
and, where appropriate, references for further investigation on the part of the reader.

The third chapter provides guidelines for the prospective Computer-Aided Software
Engineering tool, CASE tool, buyer or user. CASE tools often represent a substantial
investment, not only in dollars, but in the time required to learn and master them. The
guidelines presented here focus on CASE tools”in general and on the types of tools which may
be used during specific phases of the software development life cycle.

Chapter 4 describes a number of CASE tools currently employed at Sandia. The
descriptions of these tools have been provided by Sandians who have used them. These
individuals serve as contacts who are willing to answer an occasional question about the tool.
Although it can be argued that every software utility constitutes a useful software tool, this

chapter does not describe many of the general-purpose programs used at Sandia, Such
general-purpose programs include word processors, spreadsheets, editors, compilers, and
other utilities.

2

References for additional information are marked throughout the volume by brackets in
this way: [XYZ89]. Details on these references are listed in Appendix A. Appendix B provides
a glossary of terms and acronyms used in this volume. For follow-on investigation, the
references cited are available through the Sandia library system. Finally, Appendix C

provides a form for the reader to submit a description of a tool currently in use at Sandia, but
not listed in this volume.

1.5 How to Use This Manual

This manual is designed to be used with the Sandia Software Guidelines, references
[SSGV1] through [SSGV4], which provide details on suggested software quality practices at
Sandia National Laboratories. In addition, references from IEEE, the Institute of Electrical
and Electronics Engineers, may prove helpful. The IEEE references are available through
Sandia’s Design Information Center or from the IEEE Computer Society. The IEEE also
provides a single bound publication of all their current software engineering standards
[IEE89].

.?

.

3

2 Software Methodologies and Techniques

This chapter describes a number of methodologies and techniques used in the develop-
ment of software. The intent is not to provide a comprehensive explanation of each method;
such an attempt would fill many volumes. Rather, the aim is twofold. First, each method will
be briefly described and its use placed in the context of the software development life cycle.
Many of the techniques and methodologies described here have been embodied in CASE
tools—computer programs used for the development, testing, or maintenance of software.
The second aim is to highlight those features of a software development method that are
relevant to describing the CASE tools listed in Chapter 4 of this volume. Where appropriate,
references have been provided for further investigation.

CONCEPT
EXPLORATION

REQUIREMENTS

1,
DESIGN

I

=23-l
I INSTALLATION

AND CHECKOUT
L

I I

OPERAT 10N AND
MAINTENANCE

I I
I RETIREMENT I
1 1

Figure 1: Typical Software Life Cycle

A model representing the different phases of software development and use is shown in
Figure 1. This so-called “waterfall” model is one of the popular, accepted ways of representing
the development and use of software. While the process of developing software is not always
as neat or compartmentalized as the model implies, it does serve a useful purpose and will be
referenced to describe the context in which different software techniques and methodologies
are employed. Some of the activities and methods discussed are restricted to a particular
phase, while others apply throughout the entire life cycle. The interested reader is referred
to the third volume of these Guidelines [SSGV3] for a detailed description of the life cycle,
along with the activities and deliverables recommended for each phase.

-.

.“

4

Before describing any particular software methodology or technique, it would be prudent
first to discuss and define some basic terms and concepts. Among the more important of
these is software engineering. Software engineering is the systematic approach to the
specification, development, testing, operation, maintenance, and retirement of software.
There are a number of techniques and methodologies that together form the core of the
discipline known as software engineering. These methods and techniques enhance the quality
and productivity of the activities related to software development. For the purposes of this
volume, the subject of software engineering can be divided into two subject areas. One of
these divisions includes those topics that concern software product technology. Compilers,
languages, and parallel architectures can be considered examples of software product
technology. The remaining division includes the subjects of concern to this volume—those
having to do with a process technology. Software process technology as it relates to software
engineering is concerned with the processes of developing software and managing the
development of software. It is the process technology aspect of software engineering that will
be examined in this chapter. That software engineering is a relatively young and still
developing discipline should be understood.

No attempt will be made to formally distinguish between a software methodology and a
technique. When used in conjunction with software development, the difference is often
quite blurred. DeMarco [DEM87] provides a definition of methodology adequate for most
purposes: “A general systems theory of how a whole class of thought-intensive work ought to
be conducted.” A technique, on the other hand, may be regarded as less encompassing or
comprehensive than a methodology. From one perspective, one might think of a methodology
being comprised of one or more techniques, together with concept or theory that makes it
cohesive.

The discussion of specific techniques and methodologies is presented in an order that
roughly follows the chronological ordering of activities as they occur in the software life cycle.

2.1 Software Requirements Specifications

Of all software life cycle phases, it is generally accepted that the requirements phase is the
most important. The aim of activities conducted during this phase is to reach an under-
standing of what functional and performance attributes are required from the software in
question. Achieving this understanding is not trivial. The consequences of proceeding into
software development with requirements poorly defined or misunderstood can be great. The
need for requirements to be defined and documented in a clear and unambiguous fashion so
that all concerned parties can review and agree to them cannot be overemphasized. To
facilitate review, what is needed is a standard method of specifying requirements, a uniform
format for guidance when producing software requirements documentation. Several such
formats exist.

5

The usual Department of Defense or military contract with Sandia requires the
generation of software documentation, including requirements. This documentation is to be
prepared in accordance with the Defense Department standard DoD-STD-2167A, lle~ense
System Software Development [DOD67]. Such documentation, known in DoD parlance as
Data Item Descriptions, or DIDs, must be written to a rigid format that goes so far as to
specify the labelling and contents of each and every section in detail.

A less rigid approach to developing requirements documentation is recommended in the
IEEE Guide to Software Requirements Specifications [IEE84a]. This standard presents a
general outline for the documentation of software requirements. Included are guidelines and
recommendations for writing a good Software Requirements Specification together with

some of the common pitfalls to be avoided. The IEEE format is the one suggested by Volume
3 of these Guidelines [SSGV3].

A standard outline and format for specifying requirements contributes to common
comprehension of those requirements. However, one should not take away from this
discussion that the only way to document requirements is with a text-based specification.
Textual documentation has its particular strengths and weaknesses. For especially large or
complex projects, text-only documentation may sometimes hinder understanding, concealing
even the simplest functional requirement under a blanket of words,

Several other useful approaches to developing and documenting requirements are
available. Some of these methods are graphical in nature, using pictorial representations to
specify functionality or other requirements. The use of pictorial representations clearly
illustrates the adage that one picture is worth a thousand words. One of the best known
techniques, structured analysis, is described in Section 2.3.

While other means of specification do have certain advantages over a text-based
specification, one should not use them to the exclusion of a textual requirement. Rather,
these other methods should be used to complement the textual specification.

2.2 Prototyping

The importance of documenting requirements was stressed in the previous section. There
are times, however, when little possibility exists to define requirements adequately. At other
times functional requirements may be known, but the way the computer program interacts
with users may need to be refined. Under such circumstances, the technique of prototyping
can be used. Using a prototype permits one to learn more about the problem at hand, trying
out new algorithms or verifying capabilities.

Prototyping, when applied to software, involves the development of a program to emulate
one or more functions yet to be clearly defined. A software prototype is a minimally
functional system used to prove the feasibility of a concept or demonstrate some aspect of its
functionality to a potential user. The prototype maybe developed in the same manner as any

?
other program. More commonly, specialized tools for the creation of prototypes are being
used. Rapid prototyping using these specialized tools permits one to quickly and economi-

.
tally produce many versions of a prototype within a relatively short period of time.

User inter~ace prototyping is a special case of rapid prototyping that focuses on the
definition of the human-computer interface. This interface is both visual and behavioral.
Guidelines for the design and evaluation of user interfaces are given in [CHA86]. Prototyping
the interface allows both the software developer and the user to consider together how
information is displayed on the screens, and the manner and order in which responses are
handled. The function and appearance of the program are simulated by using only a
mock-up, or facade, to imitate a fully functional program.

The prototyping approach has several benefits and pitfalls. With little investment,
prototyping a part of the system (e.g., user interfaces) may be sufficient to define an
appropriate approach to specifying requirements for the rest of the system. In parallel
hardware-software development efforts common at Sandia, prototyping maybe the only way
of visualizing the final product before the availability of the host hardware. A common pitfall
to be avoided is allowing the code for the prototype to become the basis for the final product.
The prototype, suited for exploring concepts and ideas, may well be poorly designed,
unstructured, and not easily maintained when incorporated into the deliverable software.

2.3 Structured Analysis

Of all of the methods available for developing functional requirements for a software
system, DeMarco’s [DEM79] Structured Analysis methodology is the best known. This
method is the underlying basis of many CASE tools, and has been enhanced by others to
encompass more specialized forms of specification [HAT87] [WAR85]. A variant of
DeMarco’s approach has been popularized by Gane and Sarson [GAN79].

Structured Analysis is essentially a set of techniques for modeiling the functionality of a
system. The technique is not used to design software, but to model the processes the software
is to eventually implement. The product that results is a structured specification, Interest-
ingly, the method has been used successfully to model a wide variety of processes, not just
those performed by software.

7

ID NUM,
HOUR=_WORKED

\ PAY_RATE

EMPLOYEE.DATA

\
TOTALS_TO_DATE

Gt?C#;u~AY,
—

L— w Y“’’” I
IAT
CK
“A Y

\ CHECK_DATA

Figure2: Sample Data Flow Diagram

At the heart of this method are pictorial representations called data flow diagrams. An
example data flow diagram is shown in Figure 2. The major elements of the diagram consist
of data flows, illustrated by the labelled arcs, and processes, represented by circles. Other
symbols denote sources and sinks of data external to the system, as well as the internal
storage of data. The diagram illustrates in a simple and elegant manner the logical flow of
information in a system, together with the processes that perform transformations on the
information. Each process may be further decomposed into additional processes, creating a
structured, hierarchical decomposition of the overall specification. Complementing the use of
data flow diagrams are two other techniques, the process specification and the data
dictionary.

Process specifications, known also as p-specs or mini-specs, provide a textual description
of primitiue processes in the hierarchy of’ diagrams (i.e., those processes that have not been
subdivided and described by still more processes). Process specifications can be represented
in a number of ways: “structured” English descriptions, truth tables, or decision trees.

The data dictionary contains a description of information represented by the flows in the
diagrams. Individual data elements in the dictionary are usually defined using a rigid and
formal syntax. One of the more popular and effective means of describing this syntax is to use
a metalanguage such as the Backus-Naur form (BNF) [HEH84].

8

As an analysis tool, DeMarco’s method possesses several shortcomings. While the method
does a good job of capturing functional requirements, it does not allow other types of
important requirements to be defined. For instance, no provisions are made for the
specification of performance limits, which are better described in a textual format. The state
dependent behavior and timing aspects common to real-time systems remain undefined in
conventional data flow diagrams, as do the important relational attributes between data
elements for data base applications. DeMarco’s basic technique has been enhanced to include
real-time system requirements as discussed in Section 2.7.

2.4 Information Modelling

For a large class of software systems, the associations between pieces of information are
just as important as how that information is processed. As an example, a data base system
might typically perform little processing of the information it is responsible for storing.
Instead, the system will be used to retrieve information selectively based on specified
relationships or associations between elements of the data base. A traditional structured
analysis performed for such a system may be deceptively simple because of the small number
of data processing requirements. Yet other factors are involved in understanding and
specifying such a system.

Information modelling is a technique used to analyze and model the associations and
relationships between data. The technique is an important method for understanding and
developing requirements for relational data bases, expert systems, and other types of systems
where data associations and relationships are of primary importance. Information modelling
is sometimes referred to as knowledge engineering or knowledge analysis.

Chen [CHE77] originated what is perhaps the best-known information modelling
technique, the entity-relationship approach. The method relies on diagrams to illustrate
relationships between things of importance, or entities. These diagrams are referred to as
entity-relationship diagrams. Figure 3 illustrates several different relationships modelled
using this technique. Of note is the way in which relationships are represented succinctly and
unambiguously. For example, from the relationship depicted in center diagram of Figure 3
one can determine that:

● a child is the offspring of one and only one mother

● a mother may be the parent of one or more children

The entity-relationship approach is not the only technique used for information
modelling. The Nijssen Information Analysis Method, or NIAM, [NLJ87] is another method
currently popular in Europe and was recently introduced into the United States, The NIAM
technique relies on the use of graphic illustrations of associations between entities and
superficially resembles Chen’s entity-relationship approach.

9

~----’’”’’’”’’’ --------

1
MANAGES

EMPLOYEE
ISMANAGEDBY

Figure3: Example Entity -Relationship Diagrams

Yet another, and more recent, approach to information modelling is based on object-
oriented concepts. Shlaer and Mellor [SHL88] conceived of their technique to be used for the
analysis of systems in which data is of primary importance. Although sometimes referred to
as a method for object-oriented systems analysis, it is in reality a specialized form of
information modelling. Object-oriented system concepts are discussed in detail in Section 2.6
of this chapter.

2.5 Structured Design

During the requirements specification phase, one is concerned primarily with obtaining
an understanding of the problem to be solved, and transforming it into a written specifica-
tion. During the design phase, one seeks specific solutions to the problem in the form of a
plan for the software system to be implemented. This plan specifies how data is to be
organized (i.e., data structures), what individual components (e.g., procedures, subroutines)
are to comprise a system, and the way in which those components are to interface and share
data. The design describing a software system is analogous to an architect’s blueprint: a
detailed architectural plan for construction.

Structured design methods are a disciplined approach based on specific rules and
principles. In contrast to structured analysisj there exists no single, unified approach to
structured design. Rather, various methods have been espoused by their proponents.
Fundamentally, the various methods vary little. All have as their goal to produce a design
that is modular. A modular design is one that minimizes the coupling between modules, and
maximizes the cohesion within each module. Modularity enhances maintainability and
greatly facilitates a structured approach to testing.

10

Structured design methods also share another important characteristic. From a method-
ological standpoint, the design of a system is derived from a hierarchical decomposition of
functional specifications. Modules in the resulting hierarchy are structured according to the
functions and procedures they are to implement. Structured techniques can be considered
procedure-oriented, in contrast with object-oriented methods discussed in Section 2.6.

Perhaps the most popular structured design method is attributed to Yourdon and
Constantine [YOU79], and has been emulated and enhanced by others, notably Page-Jones
[PAG80]. This method focuses on the data flow diagrams from structured analysis as the
starting point for a design. The overall design of the system is documented using structure
charts. The structure chart is similar in appearance to an organizational chart (or the familiar
HIPO charts), but has been modified to show additional detail. Structure charts can be used
to display several types of information, but are used most commonly to diagram either data
structures or code structures. An example structure chart is shown in Figure 4. Figure 4
illustrates the hierarchy of modules in the design, which modules invoke other modules, and
the data and controls that are passed between modules. The structure chart would be
accompanied by a module specification that describes the logic and function of each module.

GENERATE
PAYROLL I

PAf~OLL C:L;U;:;E PRINT

RECORD CHECK

EMPLO~EE

READ VALIDATE
CALCULATE

UPDATE
P..:::LL PAYROLL CALCULATE

GROSS PAY DEDUCTIONS
EMPLOYEE

RECORD RECORD

E4
GfA~/

flA#’/kh
CALCULATE

TAX
WITHHELD h““:A%%-

CALC&LATE

WITHHELD

Figure 4: Example Structure Chart

11

CASE tools implement the structured design methods of Yourdon and Constantine
almost to the exclusion of other methods. However, many other popular design methods
exist. One of these design methods is the Jackson Structured Design (JSD) technique,
developed by Michael Jackson [JAC83]. Jackson’s method is a comprehensive six-step
method that integrates both software analysis and design. A quite different method of design
is the Warnier approach [WAR78], popularized in the United States by Ken Orr. Orr adopted
many of Warnier’s concepts of program design, and embedded them in a graphic technique
known as Warnier-Orr diagrams [HIG77], [HIG78]. An example Warnier-Orr diagram is
shown in Figure 5. These methods are by no means the only
available. Citations for other structured design techniques are
this chapter,

GENERATE
PAYROLL

{

READ PAYROLL

GET PAYROLL
RECORD

RECORD
VALIDATE
PAYROLL RECORD

CALCULATE
NET PAY

.
CALCULATE
GROSS PAY

CALCULATE
DEDUCTIONS

1UPDATE EMPLOYEE
RECORDS

structured design techniques
provided in the references for

{

CALCULATE
TAX WITHHELD

CALCULATE
SS WITHHELD

1PRINT
CHECK

Figure 5: Warnier-Orr Diagram

Before ending this discourse on structured methods, it is appropriate to discuss what is
meant by structured programming. Structured programming has it roots in the earliest days
of software engineering, and came about from research in attempting to develop provably-
correct programs. Dijkstra [DIJ73] among others has written much of the seminal work in
this field. Structured programming languages and techniques generally restrict the program-
mer to a well-defined set of logic constructs for coding. These logic constructs are used for
operations like iteration (DO – WHILE or FOR – NEXT) and decision-branching (IF –
ELSE IF – ELSE). Specifically uncharacteristic of structured programming is uncondi-
tional branching (e.g., using GOTO). Use of the approved logic constructs, together with
other practices associated with structured programming, increases the readability of the code
and simplifies its logical complexity. Kernighan and Plauger [KER78] are an excellent source
of advice on programming style, as is the third volume of these Guidelines [SSGV3].

12

2.6 Object-Oriented Analysis and Design

In recent years there has been an increased focus on an approach
design of software called the object-oriented approach. Object-oriented
alternative to the traditional “structured” methods of analysis and

to the analysis and
approaches offer an
design in software

development. The concepts and techniques of object-oriented analysis and design have their
origins deeply rooted in object-oriented programming.

Systems analyzed using conventional structured techniques are modelled as collections of
processes or procedures. Each procedure receives data, performs some transform or calcula-
tion using the data, and produces new data as a result. While the process is the central entity
used by structured methods, the object is the focus of object-oriented techniques. Objects are
abstractions of real-world items, and are not to be confused with the actual items themselves.
Objects are comprised of data plus the operations which act on that data. Each object has
associated with it one or more defined operations. In software systems, objects are
represented by data structures and accessed through program messages. Objects communi-
cate with each other through message passing. Information passed to objects does not
constitute data in the “structured” sense, but rather messages informing the object what
operation it is to perform on itself. These operations, or methods, are hidden within the
structure implementing each object. In object-oriented systems, objects are typically grouped
into classes. A class can be subdivided into subclasses which share common features of the
original class.

There are distinct advantages in the use of object-oriented techniques. Since system
design depends on objects which realistically represent the real-world objects they model, the
understanding of both the design process and the system model is improved. Enhanced
modularity provides a clear advantage in both the development and maintenance processes.
Increased modularity together with the properties derived from objects and classes yield
another benefit—the potential for developing truly reusable software. An often-mentioned
benefit is that an object-oriented approach may be the only viable one for the development
of extremely large software systems. As systems become larger, structured methods of

analysis and design add additional layers of functional complexity vertically, making them
more difficult to understand and implement. In contrast, a system is enlarged when using
object-oriented methods by the addition of more objects. No additional levels of complexity
are required to describe each object.

In general, an implementation using object-oriented programming languages may, at
first, seem “very different” and perhaps more difficult when compared to procedure-oriented
languages. It can be argued that the implementation is in fact easier because of the nature of
the object-oriented design. The nature of an object-oriented language is such that the
programmer develops and uses class libraries of code extensively.

13

The few analysis methods available for object-oriented systems are based on information

modelling techniques similar to those discussed in Section 2.4 of this volume. One such
analysis method has recently been developed by Shlaer and Mellor [SHL88]. Specifics of
design techniques used for object-oriented systems often depend on the particular language
used for the implementation. At the present time, there exists no uniform method of
object-oriented software development. Brief and succinct overviews of object-oriented design
are given in [PAS86] and [TES86], while more specific, in-depth treatments can be found in
[COX86] and [MEY88].

While any programming language could be used for development of object-oriented
systems, in practice the language should facilitate the use of the key constructs and attributes
of object-oriented programming. There exist three classes of languages suitable for object-
oriented programming. First are those normally associated with procedure-oriented lan-
guages that possess a rich set of features with which object-oriented systems can be
implemented. An example of this class is the Ada programming language. Another class of
languages are supersets of more conventional languages, such as C, Pascal, and Forth, that
have been enhanced. The final class of languages includes those that have been specifically
developed for object-oriented programming. Of these, the Smalltalk programming language
is probably the best known.

2.7 Analysis and Design of Real-Time Systems

The term real-time describes a wide variety of systems which cannot be neatly
encompassed by a short definition. However, definite traits do characterize real-time
systems. Real-time systems receive input data directly from the environment they interact
with and often utilize special hardware designs or architectures optimized for a particular
application. Systems required to respond interactively with users, or which are responsible
for the control of physical processes, are generally portrayed as being real-time systems.
Embedded systems are typically real-time systems. Secondly, these systems are required to

provide a response which is keyed to the time scale of the process being executed. A rapid
response alone is not a criterion; a real-time response may vary from nanoseconds to hours,
or even days. The interested reader is referred to [MEL83] for a more complete overview of
real-time systems.

The structured techniques for analysis and design of software discussed earlier in this
chapter work well for the majority of data processing systems. However, real-time software
systems possess other characteristics that make them different from typical data processing
systems. For example, a system responsible for air traffic control is quite different in nature
from one that performs payroll calculations. The air traffic control system must perform a
number of different tasks for which timing and synchronization are at least as important as
the processing of data. These timing and synchronization considerations are not addressed by
conventional, “structured” approaches to software analysis and design.

14

From a software engineering standpoint, the specification and design of real-time
software is difficult, particularly for large systems. The difficulty arises from the additional
degree of complexity involved. Not only must the software specialist consider the processing
of data, but the timing and sequencing of the processing. In order to approach the problem
in a systematic fashion, techniques and methodologies must be designed specifically to
accommodate real-time systems. Analysis and specification techniques must describe the
modes of behavior, or states, of a system together with the conditions that cause the system
to change from one state to another.

A number of analysis methods have been developed to handle real-time systems. In
general, they are either too simple, complex, or specialized to use for a general class of
problems. Perhaps the best known, and most often implemented by CASE tools, are those of
Hatley and Pirbhai [HAT87], and Ward and Mellor [WAR87]. Both methods essentially
employ DeMarco’s structured analysis approach discussed in Section 2.3, but with added
extensions to accommodate the specification of real-time systems. These extensions provide
graphical representations to model control, timing, and synchronization. Analogous to the

data flow diagrams, data stores, and process specifications in the conventional method are
control flow diagrams, control stores, and control specifications. Control flows are denoted
similar to data flows, using dashed rather than solid arcs. Figure 6 illustrates the Ward-
Mellor approach to structured analysis in which the data flow diagram and control flow
diagram are combined into one diagram.

SPEED
MONITORING
AND FLAGS

..
‘.\

‘. . .
~. ‘-.

.+.. L.. A..
--- -ENGINE ON. . . . ●.

● CONTROL ‘.-------.. ..&-:~~!N~~-F~---.----- ,

. ------

SPEED ,’
!wg;o~gi SPEED

CONVERSION
FACTOR

Figure 6: Combined Control Flow/Data Flow Diagram

15

The design and implementation of real-time systems generally follow the methods
already described for structured design and programming. Generalization is difficult,
however, since the design aspect of a real-time software system is often constrained by the
pre-existing hardware and system support available. For example, a particular external event
could be polled, or handled as an interrupt. However, the decision many times is determined
by a pre-existing hardware design. Data structures and module interfaces may have to be
designed to be compatible with existing system software designed to handle real-time
functions related to timing and device input/output.

2.8 Software Metrics

The statement is often made that one cannot control that which cannot be measured.
Almost without exception, all engineering and scientific disciplines make use of quantitative
measurements to judge the “goodness” of a process, product, or result; such measurements
often form the entire foundation of that discipline. Can particular attributes of software be
subjected to similar measurements? If not, how can one make prudent engineering judgments
about software quality, the resources that should be allocated to a development effort, or
even where the development process needs refinement? Some insist there must be a better
way than the traditional “wet finger in the air” approach. Software metrics attempt to
address these issues.

A software metric is a quantitative measure of some attribute of either software or the
process used to develop software. Note that there are many measures which quantify some
aspect of software or computer behavior: MIPS, FLOPS, Kbytes, and so on. The discussion
of such quantitative measures in this section is necessarily restricted to those that deal
directly with software or the production of software. Some measurements are used to provide
an indication of how complex the software is or how much difficulty one might anticipate in
its maintenance. Others are used to quantify aspects of’ software quality and provide a
relative degree of confidence in the reliability of the software product. A third area addressed
by software metrics is project management: cost estimation and prediction.

Complexity metrics were historically among the first attempts to quantify a feature of
software. Complexity metrics are derived from the logical complexity of code by, for example,
counting decision points or number of variables. Using complexity metrics, one can infer the
relative degree of effort required to test or maintain a piece of code. Two of the better known
and used complexity metrics were developed by McCabe [MCC76] and Halstead [CHR81].
Both metrics derive their measurements directly from source code statements.

16

.Measurements of software reliability and similar “quality” attributes cannot be deter-
mined solely from an examination of the source code. Software quality metrics rely heavily
on data obtained during the development and maintenance phases for the software, and
demand that careful records be kept from inspections, testing, and field reports. Both Gilb
[GIL77] and Boehm [BOE78] reported much of the initial work in the area of software
reliability metrics. A survey of recent work in this area is present by Shefif et al. [SHE85].

Perhaps the most practical use of metrics is for estimating development effort and
projecting completion dates. Many other engineering disciplines have reduced the estimation
and projection procedures to look-up tables and simple formulas. DeMarco [DEM82]
convincingly argues that stable software development environments implementing struc-
tured methodologies can successfully use similar procedures. Other notable work in this field
has been conducted by Boehm [BOE81], who has developed several sophisticated models
used for estimation. Like many other software metrics, the ability to accurately estimate and
project relies on the existence of a base of historical data characterizing past efforts.

The conceptual and theoretical underpinnings of software metrics have been written
about for over a decade. However, some difficult issues must be addressed when collecting or
interpreting metrics. Many of these problems result from the fact that some metrics are not
a measure of some physical phenomena but the reflection of an intellectual process. Due to
the relative immaturity of the science of software, many of the elements to be measured are
themselves poorly defined and not well understood. For instance, one unresolved question is
whether the traditional concept of reliability measured in terms of mean-time-to-failure has
any real meaning when applied to software. Estimates and cost projections are typically
calculated based upon data collected during previous development efforts. Are the estimates
produced of any real use if they are based on a software development process that is largely
unstructured and chaotic? Those who wish to pursue or further investigate these issues may
wish to refer to the work of Jones [JON86], and Grady and Caswell [GRA87].

2.9 Software Inspections

Although the waterfall model in Figure 1 portrays phases of software development, it does
not show any quality assurance or control activities other than testing. Encapsulated within
each of the development and maintenance phases shown in the waterfall are the activities
complementing development to enhance the software quality. These activities are varied, but
all have in common the purposes of reviewing the progress made thus far, ensuring that the
activities performed are in harmony with those of the previous phase (Uerificatiorz), and
ensuring that the current development effort is in line with the specifications of the original
software requirements (ucdiclation)<

17

Methods of reviewing activities range from formal presentations to casual peer reviews
and walkthroughs. These methods vary greatly as to their efficacy in improving the quality
of the software product. In 1972, IBM created a formalized review process that has since been
shown to significantly decrease the number of software defects while correspondingly
increasing programmer productivity. Generally credited to Michael Fagan [FAG76, FAG86],
software inspections are formal peer reviews in which a software product is evaluated solely
to detect faults, violations of standards, and other problems. Correction of the defects
detected takes place outside of the inspection process. Originally used on software designs
and code, the inspection technique can be used for evaluating requirement specifications, test
plans, and other software documentation. The inspection technique has been formally
incorporated into software development by firms large and small (e.g., IBM, Hewlett-
Packard, AT&T), and many conduct classes in its use.

The success of inspections is due to a formalized, structured approach that enhances the
synergy of the inspection team. Ground rules for the conduct of the inspection are specified,
as well the role each person plays during the inspection. Emphasis is placed on preparation
before the meeting; generally, as much time as will be spent in the inspection. The amount
of material to be reviewed is restricted to that which can be comfortably covered in about two
hours. A record of defects discovered is kept for the product’s author to address. The
underlying concept for the inspection is not to evaluate the author or consider alternative
designs but to improve the software product by helping the author identify defects.

Managing inspections does not require a knowledge of software engineering concepts as
much as an understanding of human nature and group psychology. Formal training in the
inspection technique is desirable, particularly for team leaders. The interested reader is
referred to both Fagan [FAG76] and Yourdon [YOU85] for additional information on
software inspections. Volume 3 of these Guidelines also contains a description of software
inspections, as well as blank copies of report forms used throughout the inspection process.

2.10 Software Configuration Management

Software frequently undergoes many changes during its lifetime. This volatility demands
that particular attention be paid to controlling and tracking changes made during the
development and maintenance of software products. No specific software engineering
methodology or discipline addresses this issue. Instead, these issues are properly viewed from
a management perspective.

18

The term software configuration management describes the set of activities used to
control and track changes to software. Specifically, it encompasses activities that

● identify and define software and hardware items of concern (configuration items).

● control the release and change of configuration items throughout their lifetime
x

● record and report the status of configuration items, together with requests for changes
to them

● verify the completeness and correctness of configuration items

Configuration Management [SSGV4], the fourth volume of the Sandia Software Guide-
lines, provides an in-depth discussion of software configuration management, as well as
associated guidelines and recommendations specific to the Sandia software environment.
This volume addresses software configuration management activities during development to
assure consistency among configuration items, and the use of the Sandia drawing definition
system to address configuration management concerns after system release. A brief discus-
sion of configuration management can also be found in Volume 3 of these Guidelines.

Another useful guide is provided by the IEEE in the form of a standard for developing
Software Configuration Management Plans [IEE83a]. This standard provides an outline for,
and the recommended contents of, a configuration management plan. The standard is
equally applicable to both individual software projects, and the development activities of an
organization in general.

Some aspects of configuration management can be easily automated, especially those
pertaining to revision and version control of documents and source code. A good discussion
of configuration management tools in general, and those for personal computers specifically,
can be found in [VAL87].

2.11 Software Project Management

Software projects, like any other project at Sandia, utilize valuable resources: time and
people. And, like any other project, these resources need to be effectively managed in order
to deliver a quality product on time. This section is concerned with project management,
specifically the management of software development projects.

19

The key to any project’s success is planning—the allocation and scheduling of time,
people, and other necessary resources. The third volume of these Guidelines provides
motivation for this planning, together with a recommended outline of a project management
plan specifically for software projects. IEEE also provides an outline for use, Standard for
Software Project Management Plans [IEE87a], as well as a companion guideline, Guide for
Software Project Management Plans [IEE88a]. The project management plan should be
used to document provisions to procure necessary manpower, establish dates to mark
important milestones in the progress of the project, and clearly define project deliverables.
Sandia-specific project guidelines for producing software for WR components can be found
in Process Guidelines for WR Software Development [SCH88].

Just as important as allocation and scheduling of resources is the planning required for
quality-related software activities. In the past, these activities were restricted to the testing
phase, judging the software product much as one would inspect a widget rolling off of an
assembly line. Current, recognized software engineering practices now incorporate quality
activities into all development phases, building quality into the product rather than tacking
it on at the end. So important is the planning for these activities that an entire volume of
these Guidelines [SSGV1] is devoted to this issue.

In addition to the planning previously mentioned, the successful software project
manager must have a grasp of the peculiar characteristics of software that differentiate its
development from that of other products. For example, can one assess progress or produc-
tivity during a software development project? What are the pitfalls common to software
projects, and how are they avoided? The answers to these and other questions lie outside the
scope of this volume. Provided, however, are references to existing literature representing an
enlightened view of software project management.

In the spirit of teaching others the lessons learned from one’s own mistakes, Brooks
[BR075] published a much-cited book containing a number of short essays. These essays
describe a variety of conceptual, as well as practical, problems encountered during one of the
first large software development efforts. The advent of structured methodologies and other
software engineering techniques introduces new issues which the software project manager
must understand. Edward Yourdon, an acknowledged expert in the area of software
development, has written a book that addresses these issues [YOU86]. Written in a clear,
non-technical style, it is recommended reading for those managing software projects using
structured techniques. Tom DeMarco, another recognized expert in the field, has authored a
number of classics in the area of software development. One of DeMarco’s books [DEM87]
addresses projects and development activities of a intensely intellectual character. The
subject matter is applicable to software development, as well as research and development
activities that are common at Sandia.

20

3 Guidelines for the Selection of CASE Tools

As software development projects have become larger and more complex, it has become
evident that methods of development that were adequate in the past are no longer sufficient.
The size and complexity of many software projects now surpass the capabilities of a single
person. Increased project size brings with it a disproportionate increase in software
development costs and an accompanying need to moderate and control those costs. In
addition, as software is used more frequently in safety and cost-critical applications, quality,
reliability, and maintainability have become significant concerns. Over time, software
developers have faced these concerns and gained more experience with large software
development projects. One result is the evolution of systematic methods for planning and
performing all facets of computer program development. These methods have been auto-
mated for speed and ease of use, and are implemented by Computer-Aided Software
Engineering (CASE) tools.

3.1 Why Use CASE Tools?

The value of using software methodologies for development efforts has become evident.
In general, these methodologies provide a well-defined way to develop software systems that
are better designed and more reliable, maintainable, and economical. The benefits of using
a methodology are derived from a “front-end” loading of the development process; more time
and effort are expended during analysis and design than has been typical in the past. The
increased emphasis on the early phases of software development requires a greater invest-
ment in the planning and design processes. The dividends include a reduction in the number
of software defects and an earlier detection and correction of errors.

The automation of these techniques has made it possible to perform a number of
iterations during the requirements and design phases, refining the analysis or design within
a relatively short time. CASE tools save time and increase productivity. Without the use of
CASE tools to perform this function, such a task would be performed manually or by
hacking—tedious, time-consuming, error-prone approaches. Most CASE tools provide some
capability to evaluate the internal consistency of analyses and designs produced. This
capability eliminates a source of potentially serious defects in the final product. The use of
CASE tools provides additional benefits in the areas of report generation and documentation.
By using CASE tools during development, an automated means of demonstrating and
reporting progress is available at any point during the project. Furthermore, software
documentation is promptly available to support the finished product.

While most computerized software development tools have been designed to cover as
many applications as practical, no one tool can be cited as the tool for all development efforts.
The greatest advantages obviously result from choosing the tool best tailored to the type of
software system being developed.

21

3.2 Considerations for the Selection of CASE Tools

In this section are posed sets of questions one might ask while investigating the
appropriateness of a specific CASE tool. The list of questions included here is by no means
complete. The intent of this section is to aid the potential CASE tool buyer or user when
investigating a particular tool. It is hoped that these questions will serve to help the user
ascertain if the tool in question fits project needs. Many of the issues raised by these
questions are discussed in the next section.

Questions have been divided into six areas: capabilities, hardware requirements, licensing
and copy protection, vendor support, graphics, and ease of use.

Capabilities

● What specific software development capabilities does this tool provide? What phases of
the development life cycle does it support?

. Does the tool provide for any code generation? If so, what languages?

● Does the tool perform more than one function? If so, do the various functions
communicate well? Is there adequate context checking across functions?

● Does the tool permit more than one user to work on a single project? If so, how is the
project partitioned among users?

● If this is an integrated tool, is a data dictionary supported? Is direct access to the data
dictionary possible? What kind of data consistency checks are done?

● Are configuration management and version control provided?

● Is it possible to import and export ASCII files? Does the tool support the creation and
export of reusable libraries?

● Can macros be defined?

● Does a back-up capability exist? If so, is it adequate?

● Is this tool suitable for all sizes of problems? What is the largest problem it will
adequately handle?

Hardware Requirements

● Does the tool run on a standard system for the machines supported? Can it easily be >
ported to another system of the same capability if necessary?

● How much memory does the tool require? ;

22

Is special graphics hardware necessary?

Is a mouse supported? Is it required?

What printers or plotters are supported?

Which monitors are supported? Is color an option?

Are there any other special hardware requirements?

Licensing and Copy Protection

●

9

●

●

●

●

What is the cost of this CASE tool?

What method of copy protection is used, if any? Does it facilitate or hinder the backup
of data?

Does the license permit this CASE tool to reside on more than one machine? If so, does
it employ a security-key system allowing only one machine to use it at a time?

Does licensing restrict the tool from residing on a “cluster” of interconnected comput-
ers?

Are site licenses available?

Can Sandia’s standard license agreement be used? If not, are there any problems
obtaining a license agreement?

Vendor Support

●

●

●

●

Does the CASE tool vendor offer training in the use of the tool? What about tutorials
or on-site classes?

Is there a user hot-line? Does the vendor respond in a timely fashion?

Is the hot-line contact well-informed and helpful?

Can a maintenance agreement be obtained? Does the agreement include updates of the
software?

Graphics

● If the CASE tool employs a graphic methodology, is the predefine set of graphic
symbols complete?

● Can text (e.g., labels, titles, IDs) be easily added? How easily can text be centered,
changed, or moved?

23

● Does the order in which graphic images are created have significance? If so, can it be
altered?

● How easily can the position of objects be changed? Does the same apply to labels,
numbering, or interconnecting arcs?

● What context checking is performed as graphics are modified? Are inconsistencies
brought to the user’s attention, just disallowed, or not saved?

● If the tool employs hierarchical levels, how easily can one move between levels? Does a
windowing system permit movement back to previous levels, or must they be redrawn?
Is the time necessary to redraw the screen excessive?

~ Can on-line help be accessed from within the graphics system?

* How much preliminary problem design must be done before one can use this tool?

Ease of Use

. Is formal training necessary to use the tool effectively?

* Does the accompanying documentation provide adequate support? Is it comprehensive,
well-organized, indexed, and readable?

● Is the tool itself user-friendly? Does the tool employ menus, or is it command-driven?

* How easily can one move around within different sections of the tool? Can one exit
easily?

● Is on-line help provided? Is the specificity of the help provided appropriate and useful?

● Does the tool use a consistent user interface across all functions? Is terminology
meaningful and consistent?

3.3 What Type of Tools Are Needed?

The purpose of this section is to give those users unfamiliar with CASE tools some insight
into the types of capabilities these tools possess.

CASE tools exist to cover most steps of the well-known waterfall life cycle model of
software development. Some tools cover only one or two of these steps, while others integrate
several individual tool functions into a single product.

24

-,

4.

3.3.1 Stand-alone Versus Integrated Tools

Stand-alone tools provide a single development or maintenance capability in the
software life cycle. The better-known stand-alone tools cover requirements specification, user
interface prototyping, configuration management, code analysis, and documentation. Stand-
alone tools normally reside on a PC-level or VAX-level machine.

The term integrated refers to the combination of several individual tools into one system.
The individual capabilities commonly found in integrated tools may include analysis and
design functions to produce data dictionaries, data flow diagrams, data structure diagrams,
entity relationship diagrams, structure charts, state transition diagrams, and control analysis
matrices. These capabilities share an underlying data base which enables context checking to
be performed across all development functions. For instance, redundant or conflicting data
items and process definitions may be detected when the analyses and designs of a particular
system are compared. Another common feature of integrated CASE tools is the availability
of configuration management and version control covering all phases of development.

Currently, most integrated CASE tools are based upon the DeMarco and Yourdon
approaches to structured analysis and structured design. One major variation in these tools
depends on whether the tool includes provisions for the modelling and design of real-time
systems. In some cases, real-time provisions are merely supplements to the system. In other
cases, the tool is specifically designed as a real-time tool. Other variations in integrated tools
include choices of style for graphic entities displayed, menu styles, colors, user interfaces,
configuration management, and security. Most integrated tools allow for multi-user and
multi-project use by providing a locking or password system for different portions of the
project.

In general, integrated tools are more expensive than a corresponding aggregate of
stand-alone tools. This added expense, and the additional functionality provided over a
collection of stand-alone tools, can be traced to the cross-checking and data dictionary
functions provided by the underlying data base. Some integrated tools require a workstation-
level machine to provide the speed and power to adequately support the sophisticated
graphics functions they utilize.

3.3.2 Specific Features of CASE Tools

Discussed below are features and enhancements that a user might look for in either
stand-alone or integrated CASE tools.

3.3.2.1 Windowing

User interfaces that employ windows provide the user with an additional degree of power
and flexibility. Windowing, the use of windows by a software tool, is essentially the

25

partitioning of the user’s screen into different sections. Different parts of a program, or even
different programs, can be displayed in each section. The size of these sections or windows
can be altered so that some windows overlap others. Typical windowing operations allow
windows to be hidden from view or shrunk into an icon or picture which can later be
expanded. Window systems are usually controlled by the use of a mouse or other manual
pointing device.

Windowing capabilities in CASE tools vary from simple systems to overlapping, user-
configurable, multi-window systems. Some CASE tools simply provide several windows in a
predefined, non-overlapping configuration. A more flexible windowing system allows the
CASE tool user to display several levels or portions of the system into separate windows and
view or modify them simultaneously. By altering the size of each window, the user can tailor
the screen to display just the right amount of information in each window. If successive levels
of a diagram hierarchy are maintained in separate, stacked windows, the user is spared the
time required to save and then redraw the levels on the screen when moving between them.

Color may or may not be a feature of a particular tool. If color is available, its use can
further enhance the windowing system by facilitating easy identification of stacked windows.

3.3.2.2 Menus

A significant part of the convenience and “user-friendliness” that a tool exhibits is
attributable to its user interface. The manner in which the user is informed of and allowed
to select options depends in large part on how those options are displayed and utilized.
Menus provide a method for the user to choose from among the various options and to
exercise those options without having to refer to documentation or memorize a list of options
or commands.

Menu interfaces may or may not be available. Code analyzers, for example, typically
require the user to enter strings of commands or instructions from the keyboard (i. e., they are
command-line driven). If available at all, a menu may be displayed only at the top or bottom
of the screen. In this case, selections may be made using a mouse, by a keyboard-directed
cursor, or by typing a number corresponding to the desired selection. In more sophisticated
interfaces, a menu may “pull down” from the top of the screen or “pop up” on the screen.
These types of menus are commonly associated with a mouse, allowing the user to “click on”
the desired option.

Menus are often nested or organized in a tree-like hierarchy, with the first menu selection
providing a second menu from which to select the desired function. The user may be able to
move easily to desired levels in the menu hierarchy or may be forced to exit in reverse
sequence through the hierarchy before making a new top-level selection.

26

3.3.2.3 Report Generation

The report generation capabilities of CASE tools vary widely. In some cases, the only
output available may be a printable file predefine by the vendor in an ASCII format. On the
other hand, more sophisticated, graphics-based systems may provide output formatted in one
of the more popular printer definition languages, such as PostScript, or pie.

The most sophisticated integrated systems provide a query language to access an internal
relational data base. Using the query language, report formats can be designed and printed
according to the user’s needs and required quality. However, the capabilities of these systems
to produce reports are wide-ranging. Some systems are only capable of generating simple
development verification and management reports; others, design documentation reports
and user manuals. For projects required to adhere to specific DoD standards, there may exist
options within the tool’s framework to provide document audit functions. Interfaces to
technical publishing systems or word processors may be

3.3.2.4 Text Editing

Text editing capabilities should facilitate correcting
The ability to directly edit an ASCII file containing data,,

provided.

rather than deleting and retyping.
specification, or process definitions

is an advantage. If label and process definition editing requires menu retrievals, the editing
will normally take more time.

Interfaces to commonly used word processor packages may
process specifications or data descriptions. A vendor-provided
pany an integrated system.

3.3.2.5 Graph Editing

be available for editing long
word processor may accom-

Graph editing, a powerful and user-friendly capability, makes a significant difference in
productivity. With a tool based on a graphic modelling or design technique, the user requires
flexibility for correcting and expanding the graphic representation. Some tools require a
number of menu requests to edit graphs. The more sophisticated tools use a mouse to move,
insert, and delete objects and arcs in the graph. Using these tools, a developer can divide large

graphs into several smaller linked graphs. Determining what capabilities exist for editing the
tool-generated graph is important. Users should ascertain how changes made by them to

previously generated graphics are handled by the error reporting mechanisms of the tool. A
few of the CASE tools can generate data flow diagrams and/or structure charts from
formatted functional specifications. When a tool has this capability, the effect that the

-. changes to these graphical outputs have on the original formatted functional specification
needs to be understood.

27

When a user modifies a graph, or moves from one graph to another, the computer must
redraw the monitor screen. Redraw time becomes an important issue as the user continually
updates, moves between graphs, and accesses information in other areas of the system.
Windowing systems may alleviate this problem by allowing graphs to remain available, but
hidden from view. Note the redraw time in any demonstration to determine whether it will
be sufficiently fast on the user’s system. Slow redraw rates are liable to become frustrating
during development.

3.3.2.6 Data Dictionaries

Data dictionaries are basic to software engineering tasks and foundational to integrated
CASE tools. Relatively inexpensive stand-alone products exist for developing data dictio-
naries to keep track of definitions of variables, data flows, and processes. The ability to
reference variables back to processes and program modules is helpful during debugging and
testing. The most advanced integrated tools use a data base management system (DBMS)
together with a query language to support using the data dictionary. This data base can often
be accessed separately from the rest of the tool. Report writing at any level of detail then
becomes possible and easily implemented using query language macros. Investigate the
specific DBMS used in the tool. While the user may be unfamiliar with the DBMS provided
by the tool, it may be possible to transfer data to another readily available and familiar
DBMS or spreadsheet.

3.3.2.7 Context and Level Checking

One of the main advantages of using integrated CASE tools is the coordination they
provide between their different parts. These different parts may, for example, permit the
creation and editing of data flow diagrams on one hand, and structure charts on the other.
The specific editor for each part of the tool provides the means to create a hierarchy of levels
for expanding processes, designs, or data structures into successively more detailed views.

Context checking, not only within the levels of one part of a tool but across different parts
of a tool, is where integrated CASE tools show their greatest advantages. In advanced forms,
this feature will check to confirm that data items and processes are defined, and that they are
defined consistently within different parts of the tool. In a stand-alone data flow diagram
tool, checking is performed across the expanded levels of the data flow diagram, data
dictionary, and process specifications. An input to or an output from a process in any diagram
must also appear in the lower levels used to further define that process. With an integrated
tool, checking is expanded to include simultaneously all the different parts and levels of the
tool (i.e., all graphs and the underlying data base). For instance, the check should ensure that
the data used in a data flow diagram is consistent with the definitions cited in the
accompanying structure charts. Some tools require that data flow arcs be given unique

28

names, while others will allow the reuse of an arc name under certain circumstances. An
example of this can occur when a data flow leaves a data store and is used as an input to
different processes. Some tools allow data flow arcs to split or branch, using the same name.
Others require that a separate name be used for the divided flow.

A variety of error and warning responses are provided to the user, depending on the
specific tool being used. These responses range from disallowing the creation of a conflicting
object, to printing a warning on the screen, or simply creating a new entry in the data base
with none of the usual context connections cited. The degree of context checking could be
selectable. Though different tools vary in their sophistication of checking provided, most
tools will at least flag the creation of redundant processes and check that the input and
output is consistent in all levels of a data flow diagram.

3.3.2.8 Code Generation

In some CASE tools, it is actually possible to generate source code based on functional
and data definitions already created. Currently, the code generated is generally limited to
data definitions and module declarations. The actual code produced may consist of a calling
statement and the delimiters necessary to denote the end of the module, together with the
declaration and typing of data being passed into the module. Little more is created than an
empty shell that the user will later fill with the code necessary to perform the intended
function. The code generated in this manner is sometimes called a code frame.

Ada, C, Pascal, and COBOL, are the most common languages for which code generation
is provided. FORTRAN code generation will be available in the near future. Vendors are
working toward the goal of being able to produce complete, finished code directly from the
functional and data definitions contained in a data base developed by the user. The goal
includes the expectation that structure charts and data flow diagrams will be produced along
with the finished code.

3.3.2.9 Language Sensitive Editors

A Language Sensitive Editor (LSE) is a specialized text editor used to write computer
code. Language sensitive editors provide the normal capabilities expected of an editor, but
include selectable “templates” for specific programming languages. Other capabilities often
found in LSES provide diagnostic reviews of the code syntax, allow the user to define or
modify template spacing and indentation, and provide on-line help as well. A few LSES
interface with common word processing packages. This facility permits text processing of
module header paragraphs.

29

LSES usually must be used with a particular version of compiler. When used with a
compiler, compilation may be initiated while using the LSE to facilitate rapid error
correction. A symbolic debugger maybe provided, especially with LSES on the larger systems
(e.g., VAX). These editors usually contain multiple buffer capabilities and permit the use of
split screens, but may not contain sophisticated windowing packages. Language sensitive
editors are not usually included in integrated CASE tool packages.

3.3.2.10 Version Control

Version control is a function implemented by both integrated tools and stand-alone tools.
Some degree of version control could also be provided by the operating system of the host
computer or workstation. The version control features of CASE tools automate some
configuration management functions, particularly those that are tedious and time-
consuming.

Version control tools perform a number of functions related to configuration manage-
ment. The most obvious function is the identification and maintenance of past software
versions. Specialized stand-alone version control tools may also provide additional features.
Features include methods to document the history of changes to different versions or to
prevent unauthorized changes to particular versions.

The specific method used to store revisions may be of interest to a prospective user.
Previous versions are stored and recreated in one of two ways. The simple way is to store
entire versions, renaming each version with a unique name to identify the version. This,
however, may consume large amounts of disk storage space for a large piece of software. The
second technique overcomes this disadvantage by storing only one baselined version. Later
versions are not stored in their entirety. Rather, only the changes to the baselined version are
stored. The version control program then reconstructs the desired version by applying the
stored changes to the baselined version when the user accesses the later version. While
baselined versions have the advantage of conserving storage space, additional time lag must
be expected when accessing previous versions.

3.3.2.11 Project Management

Project management tools are usually stand-alone tools used to support the scheduling
and/or the budgeting of projects. These tools are not normally considered to be CASE tools
since they aid in the management of all types of projects, not just software projects. Most of
these programs will produce the graphics usually associated with project management
activities such as Gantt charts, PERT charts, and resource plots. The more sophisticated of
these tools permit the user to schedule resources for several projects at once.

30

The potential buyer of a project management tool should investigate a number of
features. Among these are the maximum number of tasks allowed per project, the ease with
which schedule deviations and holidays can be entered, the level of detail provided for

? resource assignments, error notification methods for resource or scheduling conflicts, and
output capabilities. Special attention should be given to evaluating features that cannot be
overridden. For example, a user may not want to use every form of chart notation provided.
by default, but may not be permitted to eliminate them. For some tools, the manner in which
information is entered is cumbersome. Some project management tools provide an interface
to directly enter data from a number of widely used spreadsheet programs. When selecting
a project management tool, the user should first investigate his own needs carefully, and then
compare the capabilities relative to the difficulty of using the package.

3.3.2.12 Reverse Engineering

Reverse engineering is the process of deriving design information from existing program
source code. The ability to take any undocumented, poorly structured code and produce a
structure chart or cross reference listing of its variables is invaluable for maintenance
purposes.

The results typically produced by reverse engineering can include structure charts, data
flow diagrams, variable listings and cross references, and module calls. While these results
can be used to better understand and visualize old code, the capability to generate these
results is still poorly facilitated by the tools which attempt it.

31

4 CASE Tools in Use at Sandia

This chapter contains reviews of CASE tools used at Sandia National Laboratories. The
list of CASE tools described here is by no means complete; undoubtedly, new tools are
constantly being acquired and reviews of tools already in use have not been supplied.

The intent of this chapter is twofold. The first is to show the different types of CASE
tools being used at Sandia National Laboratories. The types of tools used in the Laboratory
environment reflect the diversity of tools available in the commercial marketplace. The
second is to provide a representative catalogue of these tools. It is hoped that disclosing the
existence of these tools at Sandia will stimulate additional interest in CASE tools and
encourage their use. Some of the tools listed in this chapter are available for use by other
Sandians.

Before any CASE tool was listed in this chapter, it had to satisfy two prerequisites. First,
each tool must currently be used in Sandia’s software environment. Secondly, each tool must
have an advocate or “sponsor”- someone willing to answer an occasional question about the
tool. As this volume undergoes revision, new CASE tools will be added, and those no longer
used deleted. In Appendix C is a form Sandians can use to describe newly acquired tools for
inclusion in subsequent issues of this volume.

The listing of CASE tools described in this chapter is divided into six sections. Each
section describes tools that are related by either their specific function or by their
relationship to the software life cycle. These six sections describe tools used for user interface

prototyping, the analysis, design, and/or implementation of software systems, software
configuration management, static code analysis, reverse engineering, and project manage-
ment. The sections appear in the order listed above. Within each section, the tools are
ordered alphabetically according to the tool’s name.

Information regarding each tool is given in a uniform format that provides a brief
description of the tool’s function, the environment in which it runs, and the name and
address of the tool’s vendor. In addition, comments provided by the tool contributors have
been summarized and categorized into Pro and Con sections.

32

.

4.1 Tools for User Interface Prototyping

The CASE tools described in this section are used for user interface prototyping. The
interested reader should refer to the overview of user interface prototyping contained in
Chapter 20fthis volume.

.

33

—

Tool Name: Dan Bricklin’s DEMO, Version 1A

TOOI Type: User Interface Prototyping Tool

Description:

● DEMO is a developer’s user interface prototyping tool

● Uses command windows, prompts, menus lmessages, and function keys to create and
view a series of views or slides on the screen

● Slides can be “run>>by DEMO under automatic control, simulating a program

● Prototypes developed accept user input from the keyboard to make selections (e.g.,
menu selections)

Environment:

● Runs on an IBM PCIXTIAT

● Supports use of CGA and EGA graphics

Vendor Information:

Software Garden, Inc. (61 7) 332-2240
P.O. Box 373
Newton Highlands, MA 02161

Approximate Cost: $75

User Comments, Pro:

Comes with a tutorial and tutorial diskette. Product well documented. Can create up
to 50 copies of demonstration programs that can be distributed freely without the
main DEMO program.

User Comments, Con:

Somewhat confusing to use when first learning the program. Data entered on one
screen cannot be carried over to others .(i,e,, program does not provide way to access
field entries from other screens).

Additional Information: John Franklin, Organization 7254

34

Tool Name: MIRAGE, Version 1.54

TOOI Type: User Interface Prototyping Tool

Description:

● MIRAGE is a rapid interface prototyping tool that allows designers to interactively
mock-up human-computer interfaces

● Provides a hierarchical menu-driven system that provides interface development
independent of any programming knowledge

● Allows developers to rapidly build displays and establish paths between displays

● Provides immediate simulation of the prototype user interface system

Environment:

● Requires IBM PCIXT/AT or compatible

● Minimum of 256K RAM, optimal performance using a RAM disk

● Supports monochrome andlor color monitors

● Requires either a touch screen or mouse for designing a simulation (neither is required
to view a simulation)

● Supports keyboard devices

Vendor Information:

Developed by Jim McDonald of New Mexico State University under contract to
Sandia. Distributed free of charge within Sandia environment.

User Comments, Pro:

Extensive user interface development can be done without any programming knowl-
edge. Minimum system familiarization time required (1.5-2 hours). Provides a means
of integrating human factors and other support functions in a timely and cost
effective manner. Menu-driven system makes design and simulation easy.

User Comments, Con:

The prototype cannot be used in the system directly at this time.
.

Additional Information: Doug Mangum, Organization 2312
Betty Chao, Organization 2315

35

4.2 Tools for Analysis, Design, and Implementation

The CASE tools described in this section are used for the analysis, design, and
implementation of software systems. It would be difficult, if not impossible, to separate the

descriptions of tools in this section into three separate sections representing each function.
Sometimes two, if not all three, of these functions have been integrated into a single tool.

Most of the CASE tools described in this section perform structured analysis and design
using the DeMarco/Yourdon methodologies discussed in Chapter 2. There exist, however,
those tools that provide additional capabilities in the form of information modelling,
real-time system analysis, and software implementation, either in a stand-alone manner, or
integrated together with other functions.

;,

<

36

Tool Name: Ada Design Language (ADADL)

Tool Type: Ada Design and Reverse Engineering Tool

.
Description:

●

●

●

●

●

Receives Ada code as input, generates both preliminary and detailed design docu-
mentation as output

Output of this tool can be used as input to AGT program (see description of AGT in
Section 4.5)

Output documentation includes cross-reference reports, a data dictionary, and design
hierarchy trees

Supports object-oriented design

Suitable for all sizes of projects

Environment:

. Unix-based systems

Vendor Information:

Software Systems Design (714) 625-6147
3627 Padua Avenue
Claremont, CA 91711

Approximate Cost: $600’0 – $13,000 per CPU

Site licenses available at nine times the single CPU cost

User Comments, Pro:

Vendor is responsive to our needs and suggestions.

User Comments, Con:

Not enough control over “pretty printing”. Does not generate Postscript output.

Additional Information: Amelia Maxted, Organization 9224

37

Tool Name: AIDA, Version 1.0

TOOI Type: Implementation Tool for Real-Time Systems

Description:

● AIDA is a package of tools to facilitate creation of real-time, multi-tasking applica-
tions in the “C” language

● Provides multi-process control, error trapping, interprocess communications, text
screen design (including menus), and testing tools to build and debug an application
very quickly

● Allows macro definition and library creation by user

Environment:

* Runs on IBM PCs and compatibles using CGA or EGA graphics

● IBM AR TIC coprocessor card for data interface is supported

● Can be ported to any machine that has a full implementation

Vendor Information:

Sandia-developed tool

No cost to Sandia users

Training provided by Organization 5268

User Comments, Pro:

of the “C” language

Considered user-friendly to those knowledgeable about software engineering.

User Comments, Con:

Training is advisable. Only limited documentation is available at present.

Additional Information: Rodema Moseley, Organization 5268

38

Tool Name: Analyst/Designer Toolkit

TOOI Type: Structured Analysis and Design Tool

Description:

.
● Allows user to create ai~d edit data flow diagrams, state transition diagrams,

entity-relationship diagrams, structure charts, and presentation diagrams

● Has an integrated data dictionary that supports all of the above applications

_ Provides a user-friendly, mouse driven environment

● Large variety of hard -cop<y data dictionary reports can be generated

● Allows library creation and macro definition by user

. Permits import and export of ASCII files

Environment:

● IBM PCs and compatibles

● Requires 640K RAM and 10 Mbytes of disk space

● Supports Epson FX series printers, HP plotters, IBM Proprinter, and HP Laserjet
(via conversion program)

● Supports Monochrome, CGA, and EGA monitors

Vendor Information:

John Roche
Yourdon, Inc. (415) 871-.2800
1501 Broadway
New York, NY 10036

Approximate Cost: $2000

User Comments, Pro:

Quite powerful for the price. There is no limitation to the number of drawings (charts)
. in a given design.

User Comments, Con:a

Printing diagrams using the HP Laserjet is very awkward.

Additional Information: Ed Nuckolls, Organization 2311

39

Tool Name: CASE Analyst/RT

Tool Type: Real-Time Structured Analysis Tool

Description:

● A graphics-oriented structured analysis tool for generating, editing, and plotting data
flow and control flow diagrams

● Data dictionary can be automatically generated or updated from the datalcontrol flow
diagrams, and edited using any VMS text editor

● Skeletal process specification can also be generated

● Table Editor provided to described state event matrices and other decision tables

● Supports either fi7ard/Mellor or Hatley/Pirbhai real-time methodology (desired
method is selected by user at run-time)

● Provides context checking in data flows between parent and child diagrams, and
among the diagrams, dictionary, and specifications

Environment:

● Runs in VAXIVMS environment

● Supports Tektronix graphics terminals

● Supports Epson, QMS Laser, LN03+, and LaserWriter (Postscript) printers

● Available at Sandia on SAV35

Vendor Information:

Mentor Graphics Corporation (800) 547-4303
8500 S. W. Creekside Place
Beaverton, OR 97005

Cost of software license depends on host computer and ranges from $11,500 to $74,000

User Comments, Pro:

The most useful features of this package are the data flow design tools, the evaluation
reports, and the data dictionary generated and updated automatically from the data
flow diagrams. Mentor has made use of existing VAXIVMS facilities where possible,
eliminating a major effort to learn new text editors and file management systems.

References: [WAR85], [HAT87]

Additional Information: Michael Sharp, Organization 5145

40

Tool

Tool

Name: IDMS/Architect, Release 1.0

Type: Structured Analysis Tool

Description:

. ● Used to produce data flow diagrams, entity-relationship diagrams, Bachman dia-
grams, and others

● Integrated data dictionary

● Aids data modelling by assisting in data normalization

● Provides mechanism for design verification

Environment:

● IBM PCs and compatibles

● Requires 640K RAM, 12 Mbytes of disk space

● Compatible with most dot matrix printers; laser printers requires an additional utility

Vendor Information:

Ken Pulvino (505) 889-0042
Cullinet
6121 Indian School Road, NE
Albuquerque, NM 87110

Estimated Cost: $8000

Maintenance contract available

User Comments, Pro:

On-line help available. Good graphics capability. Integrated data dictionary provides
a centralized repository for design definition, thus allowing comprehensive reports
and elimination of redundant keying of information. Product is useful even if IDMS
data base is not the data storage mechanism.

User Comments, Con:

Adding customized icons to graphics is difficult. Runs slow on a PC-XT. Hard to
coordinate changes among many developers.

Additional Information: Ken Osburn, Organization 2821

41

Tool Name: PC-IAST, Version 2.IOD

Tool Type: Information Modelling/Analysis Tool

Description:

a

●

●

●

●

Analysis tool using the NIAM information modelling technique

Takes data relationships as input, forms tables for data base in 5th normal form as
output

Can output SQL necessary to produce tables

Assists library creation and macro definition by user, capable of importing/exporting
ASCII files

Creates English langwage description of relationships from relationship diagrams

Environment:

● IBM PC or compatibles

● Requires a minimum of 256K RAM and hard disk for secondary storage

Vendor Information:

Andy Rutan (505) 262-5030
Control Data Corp.
300 San Mateo Blud N.E.
Albuquerque, NM 87i!08

Estimated cost: $70001

User Comments, Pro:

PC-IAST will come up with recommended tables in 5th normal form, a good starting
point for creating data bases. Program is user-friendly.

User Comments, Con:

Must be familiar with NIAM modelling methodology to use. Documentation is not
sufficient to learn methodology, only to use the tool.

References:

Nijssen, G.M., “A Framework for Advanced Mass Storage Applications”, Proceedings
IFIP Medinfo 1980, Tokyo, 1980.

Additional information: Norm Stevens, Organization 2825
Al Beradino, Organization 2812
,John Sharp, Organization 2825

42

Tool

Tool

Name: Prokit*Analyst, Version 2,0

Type: Structured Analysis and Design Tool

Description:

●
✟✍

●

9

●

●

PC-based design tool for software system designers and developers

Assists in developing data flow diagrams, while automatically supporting data
dictionary documentation

Provides completeness checks of data entities (flows, stores, processes, elements,
structures, etc.)

Multi-user security provided

Suitable for different sizes of problems

Environment:

●

●

●

IBM PC/XT/AT and compatibles

Copy protected

Requires 640K RAM, IOMB disk space, DOS 3.x, and Math Coprocessor

Vendor Information:

McDonnell-Douglas Information Systems Group (800) 325-1087
Mail Stop L864-280-2
P.O. Box 516
St. Louis, MO 63166

Site licenses and maintenance contracts available
Approximate Cost: $2500

User Comments, Pro:

Easy to use for someone familiar with software engineering methods. Provides very
complete system documentation and analysis information with minimal effort. Has a
moderate ‘learning curve”. The package is consistent with the MIS (management
information systems) being taught in the universities.

User Comments, Con:
A

Current version does not work easily with Prokit data generated on other PCs. It also
is a memory hog and requires a very powerful PC to generate the required graphics

. quickly.

Additional information: Robert Banwart, Organization 131
Donna Campbell, Organization 2625
Ram~ona Gauna, Organization 151

43

Tool Name: SA Tools

Tool Type: Structured Analysis Tool

Description:

9 Enables creation, evaluation, and modification of structured analysis documents

● Includes a graphics editor, text editor, an e~aluation program, a fix program, and a
display program

. Creates data flow cliagrams, data dictionaries, and mini-specifications using the

DeMarco methodology

● Suitable for all sizes of projects

Environment:

● Runs on VAX under VMS 4.x and UNIX

● Mouse is supported but not required

Vendor Information:

Mentor Graphics Corporation (800) 547-4303
8500 S. W. Creekside Place
Beaverton, OR 97005

User Comments, Pro:

Good tutorial is provided in the User Manual. The tool requires minimum familiar-
ization time. A user can become reasonably proficient in 2-3 hours of use.

User Comments, Con:

The Graphics Editor is not as versatile as those in some of the competitive software
because it has a small vocabulary.

Additional Information: Amelia Maxted, Organization 9224
Suzanne Rountree, Organization 2812
Randall W. Simons, Organization 9224

44

Tool Name: SDM/Structured

Tool Type: Forms-driven, paper-based systems development methodology

Description:

SDM is a series of manuals that detail the phases of the systems development life
cycle (is not a computer-based tool)

Provides the user with project and phase estimating worksheets and guidelines,
phase-by-phase life cycle tutorials, and comprehensive task-level assistance

Can be used from the project feasibility stage through the maintenance phase

Implements requirements specifications, structured analysis and design, testing, and
maintenance

Vendor Information:

AGS Management Systems

Approximate Costi $40,00(0

Site license and maintenance contract available

User Comments, Pro:

The product has good tutorial and documentation features. SDM is currently being
used as the 2620 software development methodology.

User Comments, Con:

SDM is somewhat overwhelming in sheer size of the manuals. Very form, report, and
paper-oriented.

Additional Information: J.Il. Schofield, Organization 2624

45

Tool Name: Software Through Pictures

TOOI Type: Integrated Structured Analysis and Design Tool

Description:

● An integrated environment for the early stages of software development

● Includes a set graphical editors and supporting programs that aid in the analysis of
requirements, software design, and prototyping

● Code generation of data definitions in C, Pascal, and Ada

● Direct access to underlying data base is provided

~ Open system architecture that allows modification and extension of the system

● Provides multi-user security, allows macro creation and library creation by user

Environment:

● VAX, Sun, and Apollo workstations

Vendor Information:

Interactive Development Environments, Inc. (714) 851-0511
150 Fourth Street, Suite 210
San Fransisco, CA 94103

Approximate Cost: $20,000

User Comments, Pro:

Extremely user-friendly and consistent across all tools. Very powerful and flexible.

User Comments, Con:

Some difficulty installing the newly released VMS version due to bugs and omissions in
installation instructions.

References:

Forman, Betty, “Designing Software With Pictures”, Digital Review, July 11 1988, pp.
39-42.

Additional Information: Margaret Olson, Organization 2814
Rodema Moseley, Organization 5268

46

Tool Name: STATEMATE

Tool Type: Real-time Analysis and Design Tool

Description:

●

m

●

●

●

9

Allows data base access by all project members with normal input through graphic and
forms editors

Uses hierarchical methodology suitable for very large problems

Consists of three distinct elements: Analyzer, Documenter, and Kernel

The Kernel
-Provides three graphical editors for defining and modelling real-time software

andlor hardware systems:
● State Charts Editor, used to define and model the dynamic, behavioral view
● Activity Charts Editor, used to define and model the functional view with

functional flow
. Module Chart Editor, use to define and model the structural view of the system

organization
— The editors are integrated into a relational data base manager which maintains the

life cycle dictionary and provides syntax checking and basic consistency checking of
the relational data base

- Can generate prototype Ada code with the optional Code Generator

The Analyzer
- Provides a powerful analysis language for interactive or batch mode simulation and

analysis of STATEMA TE specified systems
- Incorporates a simulator which allows the user to examine the dynamic response of

the system being developed to external stimuli
—Includes a dynamic testing tool that examines the data base of the system being

developed for consistency, completeness, and reachability

The Documenter
- A configurable system jfor automatically generating the documentation of a system

specification
- Templates for MIL-STD-2167A documentation are provided

Environment:

● Runs on VAX and Sun workstations with 6 Mbytes RAM (10 Mbytes preferred)

● Requires hi-resolution graphics monitor

● Requires installation of license key

● Analyzer and Documenter elements cannot be run without the Kernel

. The Documenter supports: Printers - DEC LA1OO, LA150, LA50;
Epson FX80, FX1OO

Plotters - Hewlett Packard

47

Vendor Information:

Joel Brill (714)843-9416
i-Logix, Inc.
22 Third Avenue
Burlington, MA 01803

Approximate cost per stand-alone workstation: Kernel -$10,000
Analyzer -$25,000
Documenter -$10,000

User Comments, Pro:

Good support, applications engineer assigned to each installation. On-site training
included with software. Complex system, but documentation is thorough. Some of the
methodology is unique to STATEMATE.

Kernel:
The basic consistency checking is actually quite extensive. Editors are fairly easy to
use and powerful. The graphics are of good quality.

Analyzer:
Provides the capability for checking system specifications that few other design
automation tools can provide. In interactive mode, the simulation tool can use the
graphics editor to display the results of the simulated actions.

User Comments, Con:

The system is large, using considerable disk and processor resources. The modelling
concepts used in this tool require considerable time and effort to learn. No on-line
help is provided. The software is relatively expensive and not well-suited to specifying
data processing systems. Documents produced require editing for some purposes. The
simulation and dynamic test languages require significant time and effort to learn.

References:

Harel, D., et al., “On the Formal Semantics of Statecharts,” Proceedings 2nd
Symposium on Logic in Computer Science, 1987.

Hughes, David, “Company Uses Embedded System Specification Tools on Lavi Work,”
Aviation Week and Space Technology, February 15, 1988.

Schindler, Max, “Real-time Software-design Tool Combines Three Different Views,”
Electronics Design, July 23, 1987.

Additional Information: Norm Kolb, Organization 2336
Steven Richards, Organization 2336

48

Tool Name: Teamwork

Tool Type: Structured Analysis and Design Tool

e
Description:

A tool for developing structured analysis and design

Allows development of entity-relationship diagrams, data flow diagrams

Uses common data dictionary to support above methods

Supports real-time systems analysis

Provides multi-user access to data base

Allows export of files to Interleaf and other graphicsltext editors

Suitable for all sizes of problems

Environment:

● Runs on HP9000, PS12, RTIPC, VAX, Sun, and Apollo workstations

● Requires 6 Mbytes RAM, 16 Mbytes disk space with data base

Vendor Information:

Cadre Technologies, Inc. (401) 351-5950
222 Richmond St.
Providence, Rhode Island 02903

Approximate Cost: $9500 per CPU, $45,000 and up for network and cluster licenses

User Comments, Pro:

Supports Shlaer-Mellor Object-Oriented Analysis methodology. Cadre is working to
enhance product to further support this methodology. The Buhr/Ada tool is available.

User Comments, Con:

Somewhat slow due to ci!ata base accesses. Have used better picture drawing tool—
awkward to make all lines straight and keep component sizes consistent.

Additional Information: Jeffrey Kern, Organization 9221

49

Tool Name: Tearnwork/PCSA, Version 3.00

TOOI Type: Structured Analysis - Data Flow Diagrarnming Tool

Description:

9 Interactive PC-based Structured Analysis tool using DeMarco methodology

● Can create data flow diagrams, data dictionary, and process specifications

● Checks consistency and balance of data flow diagrams

● Capable of producing hardcopy set of documents

● Can import/export ASCII files

Environment:

● Runs on IBM PC and compatibles, requires at least 512K of memory, a mouse, and
graphics adapter

“ Supports Apple Laser, Epson FX, and HP Laserjet, and Postscript printers

● Not copy-protected, but requires hardware protection block to run software

Vendor Information:

Cadre Technologies, Inc. (4ol) 351-5950
222 Richmond St.
Providence, Rhode Island 02903

Cost: $995each, $525 for 25 copies or more

User Comments, Pro:

Easy to use, with pop-up menus at appropriate locations. Hot-line available for
questions, judged to be useful. Files created with PCSA can be uploaded to more
powerful workstation-based Cadre Teamwork.

User Comments, Con:

No on-line help (although most commands are self-explanatory).

References: [DEM79]

Additional Information: David Harris, Organization 5173

50

4.3 Tools for Software Ccmfiguration Management

Tools listed in this section provide a way to implement some of the requirements for a
software configuration management scheme. The interested reader should refer to the
overview of software configuration management contained in Chapter 2 of this volume.

. In particular, configuration management tools can be used to archive previous versions of
software and its documentation, coordinate or prevent changes by different developers, and
provide a version history and record of changes.

51

Tool Name: DECICMS (Code Management System)

Tool Type: Configuration Management Tool

Description:

● Stores ASCII source files in a library

● Maintains a history of all user access to the files

● Produces a new version of a file when the file is changed

e Retains all versions of a source file and permits later access to the requested version

● Can be used with DECIMMS to provide configuration control

Environment:

● Runs in VAXIVMS environment

● Available at Sandia on SAV02, the distribution point node

Vendor Information:

Bill Bartko (505) 761-2730
Digital Equipment Corporation
5600 Jefferson, NE
Albuquerque, NM

Right-to-copy license required, price depends upon the host computer

User Comments, Pro:

CMS is user-friendly. Easy to learn to use CMS from the documentation. On-line help
is available. Very good for writing and maintaining code. Any version of a file is
accessible. Use of groups and classes allows organization of CMS files for easy use.
Good change control is provided even with many users working with the same files.

User Commentsj Con:

Only ASCII source files can be placed in a CMS library. At compile time, files included
in other source files must normally be fetched from the library.

References: VAX DECICMS Reference Manual, User’s Manual

Additional Information: Sylvia Jean-Louis, Organization 2634
Cheryl Haaker, Organization 2634

52

Tool Name: DEC/MMS (Module Management

Tool Type: Configuration Management Tool

Description:

System)

● A software management tool that automates the building of software systems

9 Executable software moclules are constructed from components stored in a common
source library

● Requires a description file and the logical dependencies to define the software module

9 Can be used with DEC/CMS to provide configuration control

Environment:

. Must be run on VAX/VMS Version 3.4 or later

9 Available at Sandia on SAV02, the distribution point node

Vendor Information:

Bill Bartko (505) 761-2730
Digital Equipment Corporation
5600 Jefferson, NE
Albuquerque, NM

Right-to-copy license required, price depends upon the host computer

User Comments, Pro:

MMS is user-friendly with on-line help and good documentation. MMS is powerful.
Once the MMS description file is correctly set up and all dependencies shown, the

processing steps, compiling, linking, etc., will be done automatically. The description
file and dependencies are easily changed. A great advance compared to doing things
by hand. MMS allows users to buildlrebuild their systems or programs with one
command line once the MMS description file and dependencies are set up.

User Comments, Con:

Some kind of introduction to MMS would be useful. Using MMS can be very
confusing. The MMS description file must be set up with care so that all required
dependencies are shown. When dependencies change, the MMS description file must
also reflect the changes.

References: VAX DBCIMMS Quick Reference Guide, User’s Guide

Additional Information: Sylvia Jean-Louis, Organization 2634
Cheryl Haaker, Organization 2634

53

TOOI Name: Librarian, Version 3.7

Tool Type: Configuration Management Tool

Description:

● Is a Source Code Manager and Control tool

● Also a control language, load library, and tracking and reporting tool

● Provides multi-user security

9 Allows library creation by users

Environment:

● IBM MVS environment

Vendor Information:

Computer Associates International, Inc. (703) 821-1700
8300Greensboro Drive, Suite 700
McLean, VI 22102

Site licenses and maintenance contracts available.

Approximate Cost: $50,000+

User hot-line available

User Comments, Pro:

Improved user interface over previous versions. Data compression routines save up to
70% of required storage space. Easy to use, on-line help available.

User Comments, Con:

Limited applicability unless establishing an IBM MVS production environment. This
company may be bought by another company soon.

Additional Information: J.R. Schofield Jr,, Organization 2624

54

Tool Name: Polytron Version Control System (PVCS)

Tool Type: Configuration Management/Version Control

Description:

. Configuration management tool for PC-based systems

● Suitable for projects of all sizes

● Used to track and maintain different versions of software

Environment:

●

●

●

Runs on IBM-PCs and compatibles

Supports a large variety of monitors and printers

VAX and network versions also available

Vendor Information:

Polytron Corporation (503) 645-1150
1700 N. W. 167th Place
Beaverton, OR 97006

Approximate Cost: $395

User Comments, Pro:

A big help in preventing the use of old source code, and for two individuals working on
code at the same time.

References: [VAL87]

Additional Information: Larry Desonier, Organization 5246

55

Tool Name: Source Tools, Version 1.2A

Tool Type: Configuration Management Tool

Description:

● A file management system that stores files, records revisions, and retrieves specific
versions on demand

● Builds large systems from smaller components and performs file comparison

● Coordinates changes made by several users as they develop modules, then recreates
programs affected by those changes

● Creates audit trails by user ID, comments, time and date stamps

Environment:

9 Supported on IBM-PCs, VAX, PDP-11

Vendor Information:

Oregon Software, Inc. (800) 874-8501
6915 SW Macadam Ave.
Portland, OR 97219

Approximate Cost: $7500

Additional Information: Bruce Maim, Organization 5173

56

4.4 Tools for Static Code Analysis

The CASE tools listed in this section have been classified as static analysis tools. Such
tools are used to analyze source code for various properties, such as complexity or correctness
of syntax and module interfaces. These tools are typically used during the implementation
and maintenance phases of software development and use.

The reader who is interested in software complexity should refer to the overview of
software metrics contained in Chapter 2 of this volume.

57

Tool Name: ANALYZ, Version 1.10

TOOI Type: FORTRAN Static Analysis Tool

Description:

_ Provides static analysis of FORTRAN programs to detect inefficient and erroneous
coding

● Lists inconsistent data types in formal parameters, variables defined but not used,
variables used but not defined, differences in COMMON blocks, etc.

● Written for VAX FORTRAN, but can be (and is) used to check FORTRAN written for
other compilers

● Suitable for all-sized problems

Environment:

● Runs under VAXIVMS

Vendor Information:

Computer Sciences Corp. (505) 242-3131
Suite 200
2100 Air Park Road S.E.
Albuquerque, NM 87106

Available free to U.S. Government agencies, already at Sandia

User Comments, Pro:

Easy to use. Checks for errors not often detected by FORTRAN compilers.

User Comments, Con:

Cannot list errors without a complete FORTRAN source listing (scheduled to be
optional in a future release). Requires significant disk space for working and output
files.

Additional Information: Arnold Elsbernd, Organization 2614

58

.-

.

TOOI Name: FORTRAN-LINT, Version 2.54

TOOI Type: FORTRAN Static Analysis Tool

Description:

Static analysis of FORTRAN programs across modules to detect inefficient and
erroneous coding

Written for VAX FORTRAN, but can be used to check FORTRAN code for other
computers

Detects inconsistent data types in formal parameters, variables used but not defined,
variables defined but not used, differences in COMMON blocks, etc.

Suitable for all sizes of programs

Environment:

● Runs under a VAX/VMS environment

Vendor Information:

Information Processing Techniques Corp. (415) 494-7500
1096 East Meadow Circle
Palo Alto, CA 94303

Approximate Cost: $4000 per CPU (license required)
Sandia has site license for 15 VAXS

Maintenance contract maintained by Division 2614

User Comments, Pro:

Easy to use, no special training required. Checks for errors often not found by the
FORTRAN compiler.

User Comments, Con:

Requires significant disk space for working files and output files, Program output not
adequate for producing hardcopy documentation.

Additional Information: Arnold Elsbernd, Organization 2614

59

Tool Name: JCLCHECK, Version 5.2

TOOI Type: Job Control Language Checker

Description:

9 Reduces run-time errors by checking the correctness of job control language (JCL)
statements prior to execution

● Verifies the existence of required data set files

- Provides error detection, data set blocking efficiency, standards enforcement, and
report generation

● Reports can be generated for jobstreams, merged procedures and JCL, data set and
program cross-referencing

● An additional feature, SYSCHECK, ualidates every J“obsubmitted for execution

- Many features can be invoked from within ISPF editor

Environment:

● Any IBM 43XX MVS computer

Vendor Information:

Computer Associates International, Inc. (703) 821-1700
8300 Greensboro Drive, Suite 700
McLean, VA 22102

Approximate Cost: $25,000

Site license and maintenance contract already at Sandia

User Comments, Pro:

Very impressive to a novice. Useful for experienced JCL programmers and batch
production environments. Especially useful for staff who are casual or non-expert
level users.

References: Installation Manual; User’s Guide

Additional Information: J.R. Schofield, Organization 2624

60

Tool Name: MAT (Maintainability Analysis

TOOI Type: FORTRAN Static Analysis Tool

Description:

Tool), Version 12.01

*
● Static analysis of FORTRAN programs across modules to detect inefficient and

erroneous coding

● Written for use on VAX computers, but can be used to check FORTRAN code for other
computers

. Detects inconsistent data types in formal parameters, variables used but not defined,
differences in COMMON blocks, etc. Messages can be switched off if desired

● Suitable for all sizes of programs

Environment:

●

●

Runs under a VAXIVMS environment

Requires 400 blocks of disk space

Vendor Information:

Gerald M. Burns
Science Applications International Corporation (703) 979-5910
1213 Jefferson Davis Highway, Suite 1500
Arlington, VA 22202

Approximate cost: None, Sandia has site license for all VAXS

Central site maintenance contract

User Comments, Pro:

Easy to use, no special training required. Checks for errors often not found by the
FORTRAN compiler. Help available from Arnold Elsbernd.

User Comments, Con:

Program output not adequate for producing hardcopy documentation. No on-line help
.

available.

* Additional Information: Arnold Elsbernd, Organization 2614

61

Tool Name: S PAT/CAM—

TOOI Type: Complexity Analyzer

Description:

● Analyzes code for logic function, syntax errors, decision nodes, branches,
and module complexity based on McCabe’s cyclomatic complexity metric

● Identifies critical test paths for a module and graphs the module’s logic

● Prints and graphs all linearly independent test paths of the module

Environment:

● IBM PC/XT/AT or compatible

-s

interrupts,

s DOS 3.x

● Version site licensed to

Vendor Information:

McCabe and Associates

Sandia currently works with Hewlett-Packard BASIC code

(301)596-3080
Twin Knolls Professional Park
5501 Twin Knolls Road
Suite 111
Columbia, MD 21045

User Comments, Pro:

Easy to use. CAM is useful for determining test paths to exercise during the test phase
of development. The product provides a complexity metric, so the user can judge when
maintainability improvements have occurred.

User Comments, Con:

Current Sandia version was contracted only to work with code written in Hewlett-
Packard RMB BASIC, Version 3.0.

References: [MCC76]

Additional Information: Darl Patrick, Organization 2854
Gene Bowling, Organization 7252

62

4.5 Tools for Reverse Engineering

Reverse engineering tools are typically used during the maintenance phase of software
use. In general, reverse engineering tools take as input source code listings and generate
information relating to the structural design of the code. Such information may describe
calling hierarchies of the modules within a program, where program variables are used, and
even graphic information such as structure charts,

63

Tool Name: Ada Graphical Tool (AGT)

Tool Type: Reverse Engineering Tool for Ada Code

Description:

8 A prototype tool developed at Sandia to produce graphic illustrations of code design

● Generates WITH-HIERARCHY and DECLARATION diagrams from code (see ref-
erence)

● Uses the output from ADADL program (see preceding description in this section) to
produce structure charts, WITH-HIERARCHY charts, and DECLARATION dia-
grams

● Produces graphic output in GKS meta-file format, which may be graphically edited by
using GRED (see description which follows in this section)

Environment:

* Runs on Unix-based systems

● Supports Postscript and Tektronix 401x and 41lx compatible printers

Vendor Information:

Sandia-developed tool

User Comments, Pro:

Reverse engineering enforces agreement between code and graphics, aiding both
design and maintenance

User Comments, Con:

This is a prototype software tool, requiring both UNIX and ADADL. AGT is an
unsupported, “home-grown” product. If you need something fixed, you may have to fix
it yourself.

References:

Maxted, Amelia and John C. Rowe, “An Ada Graphical Tool to Support Software
Development,” Ada Letters, Using Ada, ACM SIGAda International Conference, Dec.
8-11, 1987.

Additional Information: Amelia Maxtedj Organization 9224

64

Tool Name: GRaphical EDitor (GRED)

TOOI Type: Graphics Tool for Use with AGT

Description:

*
● A graphics editor that can be used to generate and edit any GKS meta-file

Environment:

● Requires a Unix and C environment

● Supports Postscript and 4014 compatible printers

Vendor Information:

Sandia-developed tool

User Comments, Pro:

GRED supports picture editing with a rich set of commands. Source code for GRED
is available, making it possible to modify it yourself.

User Comments, Con:

GRED is an unsupported, ‘home-grown” product. If you need something fixed, you
may have to fix it yourself.

References:

Ground System Development Manual, Division 9224, GRMN(3), INTERPGMT(l),

GRED(l).

Additional Information: Randall W. Simons, Organization 9224

65

Tool Name: Tree Diagrarnmer

Tool Type: Reverse Engineering Tool

Description:

● Reads input source code listing and produces an ‘organization chart” showing
program structure

9 Show hierarchy of calls to functions, procedures, and subroutines

* Indicates recursive calls

“ Works with C, BASIC, Pascal, dBASE, FORTRAN, and Modula-2

Environment:

* IBM PCs and compatibles

● Requires minimum of 256K RAM

Vendor Information:

Aldebaran Laboratories (415) 934-4395
3339 Vincent Rd.
Pleasant Hill, CA 94523

Approximate Cost: $77

User Comments, Pro:

A powerful tool in analysis of code structure and also for debugging. Useful for
documentation purposes.

%-

Additional Information: Larry Desonier, Organization 5246

.

66

4.6 Tools for Project Management

The tools cited in this section are not CASE tools per se, but are useful for the
. management of software development projects. These tools implement techniques for project

scheduling and the allocation of resources. An overview of software project management is

a. included in Chapter 2 of this volume.

67

Tool Narne:Harvard Total Program Manager II, Version 2.01

Tool Type: Project Management Tool

Description:

● A tool useful for managing lscheduling technical projects

● Capable of producing Pert and Gantt charts, task lists, work breakdown summaries,
project costs, schedules, etc.

● Suitable for all sizes of projects

Environment:

● IBM PCIXT/AT with minimum of 512K RAM

● Monochrome, EGA, CGA monitors

~ Graphics plotter convenient for obtaining quality outputs

Vendor Information:

Software Publishing Corp. (408) 848-4391
1901 Landings Dr.
Mountainview, CA 94039

Approximate Cost: $350

User Comments, Pro:

Documentation is sufficient, but not overly complex. Very large projects can be
managed with this software.

User Comments, Con:

Needs more control built into the generation of hardcopy (i.e., adjusting sizes). Takes
a long time to recompute a schedule if a new task is added or deleted.

68

Additional Information: Earl Creel, Organization 9132

Tool Name: Project Scheduler Network, Version 2.5

Tool Type: Project Planning and Management Tool

Description:

w 8 Facilitates project scheduling and management by graphic means

● Implements Gantt charts, network diagrams using Critical Path Analysis Method
(CPM), and Work Breakdown Structures (WBS)

. Interactive menu-driven user interface

8 Quick “what-if analysis functions for costs and resource allocation

● Report applications to supplement graphics

Environment:

●

●

●

●

IBM PC or compatibles; Wang; TI Professional; HP150

Minimum of 320K RAM required

Supports IBM, Epson, HP Laserjet and Thinkjet, Toshiba, Okidata, and Xerox
printers

HP plotters (7470A, 7475A, 7550) recommended for graphics output

Vendor Information:

SCITOR Corp. (415) 570-7700
Commercial Products Division
250 Lincoln Centre Dr.
Foster City, CA 94404

Estimated Cost: $575

User Comments, Pro:

Color plot graphics are visually effectiue, easy to understand. Data entry is conve-
nient. Compared to Haruard Total Manager, PSN is easier to use; reports and
graphics can be interpreted more easily.

.

User Comments, Con:

*
Considerable manipulation may be required to get a satisfactory graphic layout of the
network (precedence) diagram.

Additional Information: Catherine Rosul, Organization 2812

69

Appendix A

BAB86

BOE78

BOE81

BR075

CHA86

CHE77

CHR81

COX86

DEM79

References

Babich, Wayne

Software Configuration Management: Coordination for Team Productivity,
Addison-Wesley, 1986.

Boehm, Barry

Characteristics of Software Quality, TRW Series on Software Technology,
North-Holland, 1978.

Boehm, Barry

Software Engineering Economics, Prentice-Hall, 1981.

Brooks, Fred

The Mythical Man-Month – Essays on Software Engineering, Addison-
Wesley, 1975.

Chao, Betty

Design Guidelines for Human-Computer Dialogues, SAND86-0259, Sandia
National Laboratories, May 1986.

Chen, Peter

The Entity-Relationship Approach to Logical Data Base Design, Q.E.D. Infor-
mation Services, 1977.

Christensen, K., G. Fitsos, and C. Smith

“A Perspective on Software Science,” IBM Systems Journal, Vol. 20, No. 4,1981.

Cox, Brad J.

Object-Oriented Programming; An Evolutionary Approach, Addison-Wesley,
1986.

DeMarco, Tom

Structured Analysis and System Specification, Yourdon Press, 1979.

-.

70

DEM82

DEM87

DIJ72

DOD67

FAG76

FAG86

FA185

FOW85

GAN79

GIL77

GRA87

DeMarco, Tom

Controlling Software Projects: Management, Measurement, and Estimation,
Yourdon Press, 1982.

DeMarco, Tom

Peopleware, Yourdon Press, 1987.

Dijkstra, Edsger

A Discipline of Programming, Prentice Hall, 1973.

Department of Defense

Defense System Software Development, DoD-STD-2167A, February 29, 1988.

Fagan, Michael E.

“Design and Code Inspections to Reduce Errors in Program Development,” IBM
Systems Journal, Vol. 15, No. 3, 1976.

Fagan, Michael E.

“Advances in Software Inspections,’’1EEE Trans. Software Engr., Vol. SE-12,
No. 7, pp. 744-751.

Fairley, Richard E.

Software Engineering Concepts, McGraw-Hill, 1985.

Fowler, P. J., and A.F. Ackerman

An Oueruiew of Software Inspections, tape number GEN038, available from
Computing Education Center, Sandia National Laboratories.

Gane, Chris, and Trish Sarson

Structured Systems Analysis: Tools and Techniques, Prentice-Hall, 1979.

Gilb, Tom

Software Metrics, Winthrop Pub., 1977,

Grady, R., and D. Caswell

Software Metrics: Establishing a Company-Wide Program, Prentice-Hall, 1987.

71

HAT87

HEH84

HIG77

HIG78

HUR84

IEE83a

IEE83b

IEE84a

IEE89

JAC83

JON86
i.i&i.

Hatley, D. J., and 1. Pirbhai

Strategies for Real-Time System Specification, Dorset House, 1987.

Hehner, Eric

The Logic of Programming, Prentice-Hall International, 1984.

Higgins, David

“StructuredP rogrammingw ithWarnier-Orr Diagrams, Part I: Methodology,”
Byte, December, 1977.

Higgins, David

“Structured Programming with Warnier-Orr Diagrams, Part II: Coding the
Program,” Byte, January, 1978.

Hurley, Richard B.

Decision Tables in Software Engineering, Van Nostrand-Reinhold, 1984.

The Institute of Electrical and Electronic Engineers, Inc.

IEEE Standard for Software Configuration Management Plans, ANSIIIEEE
Std 828-1983.

The Institute of Electrical and Electronic Engineers, Inc.

IEEE Standard Glossary of Software Engineering Terminology, ANSIIIEEE
Std 729-1983.

Thelnstituteof Electrical and Electronic Engineers, Inc.

IEEE Guide to Software Requirements Specifications, ANSI/IEEE Std 830-
1984.

The Institute of Electrical and Electronic Engineers, Inc.

Software Engineering Standards, 3rd cd., IEEE, 1989.

Jackson, Michael

System Development, Prentice-Hall, 1983.

Jones, Capers

Programming Productivity, McGraw-Hill, 1986.

72

u

KER78

LEM88

MAR85

MCC76

MEL83

MEY88

MYE78

NIJ87

PAG80

Kernighan, B. W., and P.J. Plauger

The Elements of Programming Style, 2nd cd., McGraw- Hill, 1978.

Lemke, P. A., and M.J. Benson

Software Development/Support Methodology, SAND88-2135, Sandia National
Laboratories, August 1988.

Martin, James, and Carma McClure

Action Diagrams: Clearly Structured Program Design, Prentice-Hall, 1985.

McCabe, Thomas

“A Complexity Measure,” IEEE Trans. Software Engr., Vol. SE-2, No. 4, 1976.

Mellichamp, Duncan (cd.)

Real-Time Computing with Applications to Data Acquisition and Control, Van
Nostrand Reinhold, 1983.

Meyer, Bertrand

Object-Oriented Software Construction, Prentice-Hall, 1988.

Myers, Glenford

“A Controlled Experiment in Program Testing and Code Walkthroughs/
Inspections,” Comm. of the ACM, Sept. 1978, pp. 760-768.

Nijssen, G.M.

“Knowledge Engineering, Conceptual Schemas, SQL, and Expert Systems: A
Unifying Point of View,” Dept. Computer Science, Univ. of Queensland, St.
Lucia, Australia. Also available from NOVI (Dutch National Institute for
Informatics), Netherlands, 1986.

Page-Jones, M.

The Practical Guide to Structured Systems Design, Yourdon Press, 1980.

73

PAS86

PET81

PRE87

SCH88

SHE85

SHL88

SSGV1

SSGV3

SSGV4

TAU77a

Pascoe, Geoffrey A.

“Elements of Object-Oriented Programming,” Byte, Vol. 11, No. 8, pp. 139-144.

Peterson, James L.

Petri Net Theory and the Modeling of Systems, Prentice-Hall, 1981.

Pressman, Roger S.

Software Engineering, A Practitioners Approach, 2nd cd., McGraw-Hill, 1987.

Schroeder, D. H., and J.D. Mangum

Process Guidelines for Sandia WR Software Development, SAND88-0024,
Sandia National Laboratories, Albuquerque, NM, January 1988.

Shefif, Y., E. Ng, and J. Steinbacher

“Computer Software Quality Measurements and Metrics,” Micro. Reliab. ,VCJ.25,
No. 6, pp. 1105-1150, 1985.

Shlaer, Sally, and Stephen Mellor

Object-Oriented Systems Analysis: Modeling the World in Data, Yourdon
Press, 1988.

Sandia Software Guidelines

Volume 1, Software Quality Planning, SAND85-2344, Sandia National Labora-
tories, Albuquerque, NM, Aug 1987.

Sandia Software Guidelines

Volume 3, Standards, Practices, and Conventions, SAND85-2346, Sandia. Na-
tional Laboratories, Albuquerque, NM, Jul 1986.

Sandia Software Guidelines

Volume 4, Configuration Management, SAND85-2347, Sandia National Labo-
ratories, Albuquerque, NM, expected printing Feb 1990.

Tausworthe, Robert C.

Standardized Development of Computer Software: Part 1, Methods, Prentice-
Hall, 1977.

74

.

‘e

TAU77b

TES86

VAL87

WAR78

WAR85a

WAR85b

WAR86

YOU79

YOU85

YOU86

Tausworthe, Robert C.

Standardized Development of Computer Software: Part 2, Standards, Prentice-
Hall, 1977.

Tesler, Larry

“Programming Experiences,” Byte, Vol. 11, No. 8, pp. 195-206.

Vallino, Jim

“Tracking Code Modules, PC Tech Magazine, Vol. 5, No. 9, pp. 50-70.

Warnier, J.D.

Logical Construction of Programs, Van Nostrand Reinhold, 1978.

Ward, P. T., and S.J. Mellor

Structured Development for Real- Time Systems, Volume 1: “Intro~uction and
Tools,” Yourdon Press, 1985.

Ward, P. T., and S.J. Mellor

Structured Development for Real-Time Systems, Volume 2: “Essential Model-
ing Techniques,” Yourdon Press, 1985.

Ward, P. T., and S.J. Mellor

Structured Development for Real-Time Systems, Volume 3: “Implementation
Modeling Techniques,” Yourdon Press, 1986.

Yourdon, E., and L. Constantine

Structured Design: Fundamentals of a Discipline of Computer Program and
Systems Design, Prentice-Hall, 1979.

Yourdon, E.

Structured Walkthroughs, Yourdon Press, 1985.

Yourdon, E.

Managing the Structured Techniques: Strategies for Software Development in
the 1990’s, 3rd cd., Yourdon Press, 1986.

75

Appendix B

Glossary and Acronyms

Where possible, definitions in this glossary are taken from the L?LEEStandard Glossary
of Software Engineering Terminology, [IEE83b]. They are included here to provide a
single-source document for the reader.

9

●

●

●

9

●

●

●

●

●

9

analysis: The examination of a topic to distinguish its component parts or elements
separately or in their relation to one another.

ANSh American National Standards Institute.

audit: An independent review for the purpose of assessing compliance with software
requirements, specifications, baselines, standards, procedures, and instructions.

CASE: Computer-aided software engineering.

CASE tool: A computer-aided software engineering and development
software tool]

class: A defined group of elements from an object-oriented system.

tool. [see

The class

definition provides the information required to construct and use instances of the
class.

cohesion: (1) A measure of the strength of association of the elements within a module.
(2) The degree to which tasks performed by a single program module are functionally
related. Contrast with coupling.

complexity: The degree of complication of a system or system component, determined
by such factors as the number and intricacy of interfaces, the number and intricacy of
conditional branches, the degree of nesting, the types of data structures, and other
system characteristics.

configuration management: The process of identifying and defining the items in a
system, and controlling the release and change of those items throughout the system life
cycle.

context checking: Given a software process, the action of testing the flow of information
into and out of a model representing the process for coherency and consistency.

control fiow diagram: A graphical representation of a system showing the flow of control
signals throughout the system.

76

..4

● coupling: (1) A measure of the amount of information shared between two modules. (2)
A measure of the interdependence among modules in a computer program. Contrast
with cohesion.

● data abstraction: In object-oriented design, the process used to establish the data
structure of each object so that it is only accessible by the object’s own methods.

● data dictionary: (1) A collection of the names of all data items used in a software system,
together with the relevant properties of those items. (2) A set of definitions of data
flows, data elements, files, data bases, and processes referred to in a data flow
diagram.

● data flow diagram: A graphical representation of a system, showing the logical flow of
data and the processes transforming data, together with the sinks, sources, and stores
for data.

● data structure diagram: A graphical representation of the ordering and accessibility
relationships among items of data without regard to their actual storage configuration.

● design: The process of defining the software architecture, components, modules,
interface, test approach, and data for a software system to satisfy specified require-
ments.

Q drawing system: The formal system for defining Sandia-designed or controlled product
and test equipment. This system includes standards for the content of engineering

drawings, as well as methods for their creation, storage, duplication, and maintenance.

● embedded computer system: A computer system that is integral to a larger system whose
primary purpose is not computational; for example, a computer system in a weapon,
aircraft, command and control, or rapid transit system.

● embedded software: Software for an embedded computer system.

● estimation: (1) An appraisal or evaluation of the amount of time and resources required
to develop software. (2) An evaluation or appraisal of the quality or value of an
attribute, process, or product.

. HIPO: Hierarchy plus Input-Process-Output, a technique for representing the modules
of a system as a hierarchy and for documenting each module.

. iEE E: The Institute of Electrical and Electronic Engineers, Inc.

● information hiding: An attribute of object-oriented systems in which information about
the object is hidden within the module that represents the object.

77

● inheritance: A property of object-oriented systems which implies that all descriptive

attributes of a class and the methods that operate on the class are inherited by
subclasses of the class.

● inspection: A formal evaluation technique in which software requirements, design, or
code are examined in detail by a person or group other than the author to detect faults,
violations of development standards and other problems. Contrast with walk-through.

● instance: An individual example of an object within an object-oriented system.

“ integrated tool: A software tool that combines the capabilities of two or more develop-
ment or maintenance functions in a single package.

● life cycle: [see software life cycle]

● maintainability: (1)The ease with which software can be maintained. (2) The ease with
which maintenance of a functional unit can be performed in accordance with prescribed
requirements.

● management: The act of directing or managing a task.

● met ala n g uage: A language, usually with a rigid and formal syntax, in which another
language may be defined.

● method: The operations objects are asked to perform on themselves. These operations
are hidden within the module implementing the object.

● methodology: A body of methods, rules, techniques, and postulates employed in a field
of study. [see technique]

● metrics: [see software metric]

. milestone: A scheduled event in a project used to measure progress.

● mini-specs: [see process specification]

“ model: The representation of a real-world process, device, or concept,

● modular: The extent to which software is composed of discrete components such that a
change to one component has minimal impact on other components.

● object: The focus of object-oriented techniques. Objects are abstractions of real-world
items that are represented by data structures and accessed through program modules.
[see object-oriented]

‘.

.

78

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

object-oriented: A software development approach in which objects are the focus of the
technique.

object-oriented design: A disciplined approach to software design that focuses on the
object as the basis for the design of modules.

p-specs: [see process specification]

primitive process: A process that has not been broken down or further divided into more
processes.

process: A unique, finite course of steps that leads to a particular result defined by the
purpose or effect of the process.

process description: [see process specification]

process specification: An unambiguous, concise, textual description or definition of a
primitive process.

programming language: An artificial language designed
programs.

project management: The administration of a project
sion, planning, scheduling, and implementation.

to generate or express computer

including organization, supervi-

prototype: (1)A functional form of a specified software design for evaluating require-

ments, design, and specification prior to full implementation of the software system; (2)
A partial implementation of a system constructed to enable customers, users, or
developers to learn more about a problem or a solution to that problem.

prototyping: The application of a prototype in the process of software development.

quaiity assurance: A planned and systematic pattern of all actions necessary to provide
adequate confidence that the item or product conforms to established technical
requirements.

rapid prototyping: A prototyping technique that focuses on the development of the
interface between the user and the computer. Rapid prototyping allows both the user
and software developer to work together to facilitate the development of the user
interface.

real-time: Pertaining to the processing of data by a computer in connection with another
process outside of the computer according to time requirements imposed by the outside
process.

reliability y: The probability that software will not cause the failure of a system for a
specified time under specified conditions.

79

. requirement: A condition or capability that must be met by a system or system
component to satisfy a contract, specification, or other formally imposed document.
The set of all requirements forms the basis for system development.

● software: Computer programs, procedures, rules, and associated documentation and
data pertaining to the operation of a computer system.

.

s software engineering: The systematic approach to the specification, design, develop-
ment, testing, operation, maintenance, and retirement of software.

● software life cycle: The sequence of events that begin when a software product is
conceived and end when the software is no longer available for use.

● software maintenance: Modification of a software product after delivery to correct
faults, to improve performance or other attributes, or to adapt the product to a changed
environment.

* software metric: A qualitative measure of the properties of software or of the processes
used to produce software.

● software quaiity: (1)The totality of features and characteristics of a software product
that bear on its ability to satisfy requirements specification. (2) The degree to which
customers or users perceive that software meets their composite expectations.

● software quality assurance: [see quality assurance]

● software tool: A computer program used to help develop, test, analyze, or maintain
another computer program or its documentation.

● SRS: Software requirements specification.

● SSG: Sandia Software Guidelines.

“ state transition diagram: A graphical representation of the states of a system and the way
transitions from one state to another occur.

● states: The conditions or modes of behavior of a system.

= stand-alone tool: A software tool that provides a single development or maintenance
capability in one system.

● structure chart: A graphic chart for depicting the partitioning of a software system into
modules, the hierarchy and organization of these modules, and the communication
interfaces between the modules.

80

● structured analysis: A disciplined approach to requirements specifllcation that stresses
the development of a maintainable specification and communication with the user. The
analysis is based on a technique using data flow diagrams, a data dictionary, and
process descriptions,

● structured design: A disciplined approach to the design of software based on a
hierarchical decomposition and implementation of system functions into software
modules. Structured design has as one of its goals to maximize cohesiveness and
minimize coupling.

● structured methods: Software development methods that are concerned with compo-
nents of a system and the interrelationship between these components. Structured
methods include structured analysis, structured design, and structured program-
ming.

“ structured programming: A well-defined software programming technique that normally
incorporates strict use and implementation of structured program control constructs.

“ synchronization: A process of maintaining one or more operations in step with each
other.

● technique: A systematic means of achieving a desired goal. Contrast with methodology.

● tool: [see software tool]

● user interf ace: The means by which a user interacts with or communicates with a
computer system. The interface involves both visual and behavioral actions and
reactions of the user.

● validation: The process of evaluating software at the end of the software development
process to ensure compliance with software requirements. [see verification]

● verification: The process of determining whether or not products of a given phase in the
software development cycle fulfill the requirements established during the previous
phase. [see validation]

● walk-through: A review process in which a designer or programmer leads one or more
other members of the development team through a segment of design or code that he
or she has written, while other members ask questions and make comments about
technique, style, possible errors, violation of development standards, and other prob-
lems. Contrast with inspection.

● waterfall model: A model of the software life cycle in which the time periods or phases
of the life cycle are arranged as the cascades in a waterfall. The software life cycle
typically includes a requirements phase, design phase, implementation phase, test
phase, installation and checkout phase, operation and maintenance phase, and retire-
ment phase.

81

Appendix C

The form enclosed in this appendix should be used to provide a description of CASE tools
not listed in the volume or tools that have been upgraded. Descriptions of new or updated
CASE tools will be saved and incorporated into future revisions of this volume.
Completed forms should be sent to:

Editor, Sandia Software Guidelines
Organization 7254

82

‘m

SANDIA SOFIWARE GUIDELIIWS
Volume 5

Tool Description Form

Name/Org Phone Date

Tool Title Ver. No.: (BetaVersion?_)
Vendor/Developer

GeneralSystemFunctions

RequirementsSpecs. _ StructuredDesign. StructuredAnalysis
DataDictionary

.
Testing— — Maintenance

Prototyping Real-time Control— — — Object OrientedSupport
ConfigurationMgmt.— Code Generation(Iang: —

_ Other
.)

Additional Capabilities:

Multi-usersecurity?
Configurationmanagement?
Librarycreationby user?
Macro definition by user?
Suitablefor all sized problems?
Import/ExportASCII files?

Environment

Copy protected?
Postscriptsupported?
Mousesupported?
Graphiccard required?

Yes No Unsure Comments

Yes No Unsure Comments

Supportedon PC VAX — Other:
Memory requirement
Whichmonitorsare supported:
Whichprintersare supported:
Whatother equipmentabove a baselinesystemis required

Purchase Yes No Unsure Comments

Sitelicensesavailable?
Alreadyat Sandia?

Licensingproblems?
Maintenancecontractavailable?

Approx. totalcosti

Suppork Yea No Unsure Comments

Is trainingavailable?
Advisablein your opinion?

Is therea hotline?
If yes, is it useful?

(OVER) ver. 5/S8

83

Ease of Use:
Is the product friendly to a usec Yes No Unsure Comment

New to software engineering?
Familiar with software engineering?

1s there on-line help?
Is the report writing capability adequate for I

producing a hardcopy set of documents? -.

Comments

Tool Description (brief description)

User Commenk
Pro

con

Name Org. Phone

SNL Contact=

References: [author, title, date, publication]

Please attach one or two pages of sample output if possible.
Return form to: Lynn Ritchie, SNLA/Org. 7254

84

INDEX

A

Ada, 14, 29, 37, 46,47, 64
ADADL, 64
AGT, 37,64,65
AIDA, 38
analysis

structured, 81
ANALYZ, 58
ANSI, 76
arc, 29
audit, 27, 56, 76

B

Backus-Naur form, 8
Boehm, 17, 70
Brooks, 20, 60

c

C, iii, 3, 14, 29, 32, 46, 64,
65, 66, 70, 74, 75, 82

CASE, iii, 2, 4, 7, 12, 15,
21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 32, 33,
36,40, 57, 67, 76, 82

CASE tools, iii, 2, 4, 7, 12,
15, 21, 22, 24, 25, 26,
27, 28, 29, 30, 32, 33,
36, 57, 67, 82

Caswell, 17, 71
Chen, 9, 70
class, 5, 9, 13, 14, 15, 76,

78
CMS, 52
code frame, 29
code generation, 22, 29, 46
cohesion, 10, 76, 77
command-line, 26
complexity

metric, 62
computer-aided software

engineering, 21, 76

configuration mangement,
i, iii, 18, 19, 22, 25, 30,
32, 51, 52, 53, 54, 55,
56, 70, 72, 74, 76

Constantine, 11, 12, 75
context checking, 22, 24,

25, 28, 29, 40, 76
control flow diagrams, 15, 40
control flows, 15
control specifications, 15
control stores, 15
copy protection, 22, 23
coupling, 10, 76, 77, 81

D

data abstraction, 77
data base, 9, 25, 27, 28, 29,

41, 42, 46, 47,49, 70
data dictionary, 8, 22, 25,

28, 37, 39, 40, 41, 43,
49, 50, 77, 81

data flow diagram, iv, 8,
15, 28, 29, 77

Data Item Descriptions, 6
data structure diagram, 77
data structures, 11, 13, 16,

28, 76, 78
debugger, 30
DEC, 47,64
DeMarco, 5, 17, 20, 25,44,

50, 70, 71
DEMO, 34
design, iii, 3, 7, 10, 11, 12,

13, 14, 15, 16, 21, 24,
25, 27, 31, 32, 35, 36,
37, 38, 39, 40, 41, 43,
45, 46, 47, 48, 49,63,
64, 70, 73, 75, 77, 78,
79, 80, 81

DIDs, 6
Dijkstra, 12, 71
documentation, i, 1, 5, 6,

18, 21, 24, 25, 26, 27,
37, 38, 42, 43, 45, 47,
48, 51, 52, 53, 59,61,
66, 68, 80

85

DoD-STD-2167A, 6, 71
drawing definition system, 19
drawing system, 77

E

embedded
computer system, 77
software, 77

estimation, 16, 17, 71, 77

F

Fagan, 18, 71
Forth, 14
FORTRAN, 29, 58, 59, 61,

66
FORTRAN-LINT, 59

G

Gane, 7, 71
Ganitt, 30, 68, 69
Gilb, 17, 71
Grady, 17, 71
GRED, 64,65

H

Halstead, 16
Harvard Total Program

Manager, 68
Hatley, 15, 72

I

icon, 26
IDMS, 41
IEEE, i, 3, 6, 19, 20, 71,

72, 73, 76, 77
information hiding, 77
information modelling, iii,

9, 10, 14, 36, 42
inheritance, 78
inspection, 18, 78, 81

inspections, iii, 17, 18, 71
instance, 9, 17, 25, 28, 78
integrated, iii, 22, 25, 27,

28, 30, 36, 39, 41, 46,
47, 78

integrated tool, 22, 28, 78
integrated tools, iii, 25, 28, 30

J

Jackson, 12, 72
JCLCHECK, 60
Jones, 17, 72

K

Kernighan, 12, 73

L

Language Sensitive Editor,
29

level checking, 28
Librarian, 54
libraries, 13, 22
library, 3, 38, 39, 42, 46,

52, 53, 54
license, 23, 40, 45, 47, 52,

53, 59, 60, 61
licensing, 22, 23
LSE, 30

M

macro, 38, 39, 42, 46
maintainability, 10, 21, 62,

78
maintenance, 2, 4, 5, 13,

16, 17, 18, 23, 25, 30,
31, 41, 43, 45, 54, 57,
59, 60, 61, 63, 64, 77,
78, 80, 81

McCabe, 16, 62, 73
Mellor, 10, 14, 15, 74, 75
menu, 25, 26, 27, 34
menus, 24, 26, 50

86

*

m

messages, 13, 61
method, 2, 4, 5, 7, 8, 9, 10,

11, 12, 14, 15, 23, 26,
30,40, 69, 78

methodologies, 1, i, iii, 1, 2,
4, 5, 15, 17, 20, 21, 36

methodology, i, 2, 5, 7, 18,
21, 23, 40, 42, 44, 45,
47, 48, 49, 50, 73, 78, 81

metric, 16, 62, 80
metrics, iii, 16, 17, 57, 71,

78
milestone, 78
MIRAGE, 35
MMS, 53
model, 4, 7, 9, 13, 15, 17,

24, 47, 76, 78, 81
Modula-2, 66
modular, 10, 78
modularity, 10, 13
module specification, 11
mouse, 23, 26, 27, 35, 39,

44, 50

Plauger, 12, 73
PostScript, 27, 37, 50, 64,65
primitive, 8, 79
primitive process, 79
procedure-oriented, 11, 13, 14
process, 4, 5, 8, 13, 14, 15,

16, 17, 18, 20, 21, 25,
27, 28, 31, 40, 50, 74,
76, 77, 78, 79, 81

process specification, 8, 40, 79
programming language, 2,

14, 79
project management, iii, 16,

19, 20, 30, 31, 32, 67,
68, 79

project management plan,
20

Project Scheduler Network,
69

projection, 17
Prokit, 43

prototype, 6, 7, 35, 47, 64, 79

Q
N

query language, 27, 28
NIAM, 9, 42

R

o

object, 13, 29, 77, 78, 79
object-oriented, iii, 10, 11,

13, 14, 37, 49, 70, 73,
74, 76, 77, 78, 79

P

p-specs, 8, 79
Page-Jones, 11, 73
Pascal, 14, 29, 46, 66
PC-IAST, 42
PCSA, 50
PERT, 30, 68
pie, 27
Pirbhai, 15, 72

rapid prototyping, 7, 79
real-time, iii, 9, 14, 15, 16,

25, 36, 38, 40, 47, 49,
72, 73, 75, 79

real-time systems
analysis, 15, 49

redraw, 24, 26, 28
reliability, 16, 17, 21, 79
report generation, 21, 27, 60
requirement, 6, 18, 80
reverse engineering, iii, 31,

32, 37, 63, 64, 66

s

SA Tools, 44

87

Sandia Software Guidelines,
i, 1, 2, 3, 19, 74, 80, 82

Sarson, 7, 71
SDM, 45
Shefif, 17, 74

Shlaer, 10, 14, 74
Smalltalk, 14

software
configuration
management, iii, 18, 19,
32, 51, 70, 72
design, 46, 79
inspections, iii, 17, 18,

71
life cycle, i, iv, 4, 5, 25,

32, 80, 81
maintenance, 80
metric, 16, 80
metrics, iii, 16, 17, 57,
71
quality, i, ii, 3, 16, 17,
70, 74, 80
quality assurance, i, ii,
80
tool, iii, 2, 25, 64, 78,
80

software engineering, 2, 3,
5, 12, 15, 18, 20, 21, 28,
38, 43, 70, 71, 72, 74,
76, 80

Software Quality Assurance
Division, ii

Software Through Pictures,
46

source code, 16, 17, 19, 29,
31, 54, 55, 57, 63, 65,
66

Source Tools, 56
SRS, 80
SSG, 80
stand-alone, iii, 25, 28, 30,

36, 80

stand-alone tool, 80
standard, i, 5, 6, 19, 20, 22,

23, 72, 76
standards, i, 3, 18, 27, 60,

72, 74, 75, 76, 77, 78, 81
state transition diagram, 80
STATEMATE, 47, 48
states, 9, 12, 15, 80
static analysis, 57, 58, 59,

61
static code analysis, iii, 32,

57
structure chart, iv, 11, 31,

80
structured

analysis, iii, 6, 7, 9, 10,
11, 15, 25, 36, 39, 40,
41, 43, 44, 45, 46, 49,
50, 70, 81
design, iii, 10, 11, 12,
16, 25, 75, 81
methods, 12, 13, 81
programming, 12, 81

symbolic debugger, 30
synchronization, 14, 15, 81
S PAT/CAM, 62—

T

Teamwork, 49, 50
technique, 5, 6, 7, 9, 10, 12,

18, 27, 30, 42, 77, 78,
79, 81

testing, 4, 5, 10, 17, 20, 28,
38, 45, 47, 73, 76, 80

tool description form, iii
tools, 1, i, iii, 1, 2, 4, 7, 12,

15, 19, 21, 22, 24, 25,
26, 27, 28, 29, 30, 31,
32, 33, 36, 38, 40, 44,
46, 48, 51, 56, 57, 63,
67, 71, 75, 82

Tree Diagrammer, 66
truth tables, 8

88

u

user interface, iii, 7, 24, 25,
26, 32, 33, 34, 35, 54,
69, 79, 81

user-friendly, 24, 27, 38,
39, 42, 46, 52, 53

v

validation, 81
verification, 27, 41, 81
version control, 19, 22, 25,

30, 55

w

walk-through, 81
Ward, 15, 75

Warnier, 12, 75
Warnier-Orr diagrams, 12,

72

waterfall, 17, 24, 81

windowing, 24, 25, 26, 28,

30

windows, 25, 26, 34

WR, 2, 20, 74

Y

Yourdon, 11, 12, 18, 20, 25,

39, 70,71,73,74,75

m?

89

DISTRIBUTION:

1 Martin Marietta Energy Systems, Inc.
Attn: Melissa Z. Smith, Y-12
Vice-Chair, SQA Subcommittee
Y-12 Plant
PO BOX 2009

Building 9723-11A, Mail Stop 8127
Oak Ridge, TN 37931

1 Allied-Signal Aerospace
Kansas City Division, D/418
Attn: John Vic Grice, KCD
Secy, SQA Subcommittee
PO Box 419159
Kansas City, MO 64141-6159

1 Allied-Signal Aerospace
Kansas City Division, D/418
Attn: Don Schilling, KCD
JOWOG-39 Co-Chairman
PO Box 419159
Kansas City, MO 64141-6159

1 131
2 131
1 151
2 151
1 400
1 1265
1 1410
1 1412
1 1414
1 1424
1 1531
1 1531
1 1551
1 1555

10 1556
1 2300
1 2310
1 2311
2 2311
1 2312
2 2312
1 2314
1 2315
2 2315
1 2330
2 2336
1 2336

R. H. McGee
R. N. Banwart
N. A. McEwen
R. T. Gauna
H. D. Pruett
P. L. McAllister
P. J. Eicker
G. S. Davidson
R. C. Lennox
M. P. Sears
S. L. Thompson
J. M. McGlaun
H. R. Spahr
G. F. Polansky
W. L. Oberkampf
J. L. Wirth
M. K. Parsons
T. D. Donham
C. E. Nuckolls
D. J. Allen
J. D. Mangum
D. M. Small
M. J. Smartt
B. P, Chao
J. H. Stichman
N. R. Kolb
E. J. Nava

1 2336

1 2364

1 2600

1 2600A

1 2601

1 2610

1 2614

2 2614

250 2614

1 2620

1 2624

2 2624

2 2625

1 2634

1 2634

2 2634

1 2640

1 2800

1 2810

1 2812

2 2812

2 2812

2 2812

1 2814

5 2814

1 2820

2 2821

2 2825

1 2825

2 2825

1 2834

1 2854

1 2854

2 2854

1 3411

1 5100
1 5145
2 5145
1 5173
2 5173
2 5173
1 5173
1 5221
2 5246
1 5246
1 5268
2 5268

S. C. Richards
J. F. Jones, Jr.
L. D. Bertholf
P. A. Lemke
J. C. Garrison
D. C. Jones
A. R. Iacoletti
A. A. Elsbernd
B. L. Straba
K. O. Waibel
T. L. Ferguson
J. R. Schofield
D. S. Campbell
S. K. Fletcher
C. K. Haaker
S. L. Jean-Louis
E. J. Theriot
W. E. Alzheimer
D. W. Doak
J. A. Wisniewski
A. C, Beradino
C. C. Rosul
S. L. K. Rountree
P. A. Erickson
M. E. Olson
G. Carli
K. W. Osburn
J. K. Sharp
O. H. Bray
N. H. Stevens
D. L. Janni
R. E. Thompson
S. C. Babb
D. P. Patrick
L. A. Malczynski
H. W. Schmitt
D. H. Schroeder
M. W. Sharp
R. F. Davis
D. L. Harris
B. N. Maim
A. L, Yates
D. D. Spencer
L. M, Desonier
R. P. Syler
M. S. Allen
M. R, Moseley

.

90

DISTRIBUTION: (continued)

.

1
1
1
1
1
1
1
1
1
2

1

1

10
5
5

10
5

5

1

1

1

1

1

1

5268

6447

6452

7111

7131

7200

7233

7250

7252

7252

7252

7253

7254

7254

7254

7254

7254

7254

7262

7263

8134

8134

8230

8233

S. J. Weissman
D. A. Brosseau
G. C. Giesler
L. R. Hill
L. F. Brady
C. H. Mauney
R. E. Smith
G. T. Merren
D. W. Bushmire
G. D. Bowling
M. E. Prickett
G. E. Dahms
M. A. Blackledge
K. E. De Jong
J. P. Franklin
L. T. Ritchie
E. H. Tomlin
S. L. Trauth
R. B. Ronan
G. W. Mayes
M. H. Rogers
K. A. True
W. D. Wilson
F. J. (kpps

1 8233

1 8233

1 9127

1 9131

1 9131

2 9132

1 9211

1 9215

1 9215

1 9220

1 9221

2 9221

1 9221

1 9224

2 9224

2 9224

2 9224

1 9243

2 8524

5 3141

J. M. Harris
R. Y, Lee
C. E. Olson
D. D. Boozer
J. A. Hollowell
E. E. Creel
G. J. Dodrill
F. N. Hill
K, G. Weber
G. H. Mauth
L. M. Grady
J. P. Kern
J. L. Williams
L. J. Ellis
K. M. Erickson
A. M. Maxted
R. W. Simons
W. R, Pfarner
J. A. Wackerly
S. A. Landenberger

8 3141-1 C. L. Ward
for DOE/OSTI

3 3151 W. I. Klein

Second Printing, September 1992

326 M. A. Blackledge (500)

91’

